

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

My dotfiles

Configuration used on my Arch Linux [https://archlinux.org/] with i3 / i3status

[image: https://gitlab.com/pad92/dotfiles/-/raw/master/dist/arch/screenshot.png]screenshot

Install Dotfile

git clone https://gitlab.com/pad92/dotfiles.git ~/.dotfiles
./.dotfiles/install

Install only VIM

curl -sSL https://gitlab.com/pad92/dotfiles/-/raw/master/vim.sh | sh

ArchLinux

My Setup

	install.md [https://gitlab.com/pad92/dotfiles/-/blob/master/dist/arch/install]

	pkglist.txt [https://gitlab.com/pad92/dotfiles/-/tree/master/dist/arch/packages/]

Ubuntu

My Setup

	install.md [https://gitlab.com/pad92/dotfiles/-/raw/master/dist/ubuntu/install.sh]

README.md

	[] update screenshot

	[x] update packages

i3spotifystatus

[image: https://raw.githubusercontent.com/pradzio1/i3spotifystatus/master/res/scr.png]screen

About:

i3 status isn’t particularly the best status generator for i3bar in terms of customization. But it’s my favourite, because it works, it’s easy to use, and it’s bundled with i3wm so I don’t have to think about installing it. Feature that lack I’ve been missing the most that wasn’t built into i3status was notifying about author and title of currently played song in spotify client. I have found some gists written by @csssuf [https://github.com/csssuf], and they work well, but due to format of data outputed by i3status all of the information about colors of text was lost and i3bar was showing only monochromatic text.

i3spotifystatus is a tiny python (with even smaller bash script because I was too lazy) script that parses JSON outputed by i3status, adds information about song author and title and outputs it to i3bar.

What you’ll need:

	DBus

	@csssuf [https://github.com/csssuf]’s awk script, you can find it here [https://gist.github.com/csssuf/13213f23191b92a7ce77#file-spotify_song-awk]

	Spotify client (obviously)

	You’ll need FontAwesome if you want to display spotify logo on the bar.

How to install:

	clone repository to your prefered location

	in your i3 config file (usually placed in ~/.config/i3/) set status_command to i3status | /path/to/your/pystatus.py in bar section, like this:

bar {
 status_command i3status | ~/Documents/GitHub/i3spotifystatus/pystatus.py
}

If you are using i3-gaps, it will probably contain the status_command i3status already. You just have to add the pipe and the python script path after.

	in i3status.conf file (create one if you don’t have any -> read i3status doc for more information) set output_format = "i3bar" inside the ‘general’ configuration, like this:

general {
 ...
 output_format = "i3bar"
 ...
}

	Reload i3 configs (usually Mod + Shift + R, if you haven’t changed it).

Tip: If you are not sure how this whole thing works, you can comment your config files using # at the beginning of each line. This way it is easy to revert the changes.

Credits:

Script is based on sample wrapper commited on original i3status repository.

Awk script by @csssuf.

gruvbox-rofi

Gruvbox dark and light color themes for Rofi

Rofi [https://github.com/DaveDavenport/rofi] color themes based on the
Gruvbox color scheme [https://github.com/morhetz/gruvbox].

Includes six versions to choose from:

	Gruvbox Dark

	Gruvbox Dark (soft contrast)

	Gruvbox Dark (hard contrast)

	Gruvbox Light

	Gruvbox Light (soft contrast)

	Gruvbox Light (hard contrast)

Screenshots

Dark (gruvbox-dark.rasi)

[image: gruvbox dark theme]gruvbox dark theme screenshot

Dark (soft contrast) (gruvbox-dark-soft.rasi)

[image: gruvbox dark theme (soft contrast)]gruvbox dark theme (soft contrast) screenshot

Dark (hard contrast) (gruvbox-dark-hard.rasi)

[image: gruvbox dark theme (hard contrast)]gruvbox dark theme (hard contrast) screenshot

Light (gruvbox-light.rasi)

[image: gruvbox light theme]gruvbox light theme screenshot

Light (soft contrast) (gruvbox-light-soft.rasi)

[image: gruvbox light theme (soft contrast)]gruvbox light theme (soft contrast) screenshot

Light (hard contrast) (gruvbox-light-hard.rasi)

[image: gruvbox light theme (hard contrast)]gruvbox light theme (hard contrast) screenshot

Installation

These themes are included with Rofi as of version
1.3.0 [https://github.com/DaveDavenport/rofi/releases/tag/1.3.0]. Run
rofi-theme-selector to preview/apply them with Rofi’s theme selector
script.

See Manual Installation if you wish to install the
themes manually. This may be preferable if you plan on customizing them.

Manual Installation

	Download [https://github.com/bardisty/gruvbox-rofi/archive/master.zip]
or clone the repository:

git clone https://github.com/bardisty/gruvbox-rofi ~/.config/rofi/themes/gruvbox

	Edit your Rofi configuration file (~/.config/rofi/config):

rofi.theme: ~/.config/rofi/themes/gruvbox/gruvbox-dark.rasi

Links

	Rofi [https://github.com/DaveDavenport/rofi] window switcher, run
launcher, ssh dialog, and dmenu replacement

	Gruvbox [https://github.com/morhetz/gruvbox] color scheme for Vim

License

MIT

Changelog

master

v3.1.0, 2023-01-03

	upgrade to new version of tmux-test

	bug: when using emacs copy mode, Enter does not quit screen after tpm
installation/update. Fix by making Escape the key for emacs mode.

	add a doc with troubleshooting instructions

	add .gitattributes file that forces linefeed characters (classic \n) as
line endings - helps with misconfigured git on windows/cygwin

	readme update: announce Cygwin support

	un-deprecate old plugin definition syntax: set -g @tpm_plugins

	More stuff, check git log.

v3.0.0, 2015-08-03

	refactor shared_set_tpm_path_constant function

	move all instructions to docs/ dir

	add bin/install_plugins cli executable script

	improved test runner function

	switch to using tmux-test [https://github.com/tmux-plugins/tmux-test]
framework

	add bin/update_plugins cli executable script

	refactor test expect scripts, make them simpler and ensure they properly
assert expectations

	refactor code that sets ‘TMUX_PLUGIN_MANAGER_PATH’ global env var

	stop using global variable for ‘tpm path’

	support defining plugins via set -g @plugin in sourced files as well

v2.0.0, 2015-07-07

	enable overriding default key bindings

	start using C-c to clear screen

	add uninstall/clean procedure and keybinding (prefix+alt+u) (@chilicuil)

	add new set @plugin 'repo' plugin definition syntax (@chilicuil)

	revert back to using -g flag in new plugin definition syntax

	permit leading whitespace with new plugin definition syntax (thanks @chilicuil)

	make sure TMUX_PLUGIN_MANAGER_PATH always has trailng slash

	ensure old/deprecated plugin syntax set -g @tpm_plugins works alongside new
set -g @plugin syntax

v1.2.2, 2015-02-08

	set GIT_TERMINAL_PROMPT=0 when doing git clone, pull or submodule update
to ensure git does not prompt for username/password in any case

v1.2.1, 2014-11-21

	change the way plugin name is expanded. It now uses the http username
and password by default, like this: https://git::@github.com/. This prevents
username and password prompt (and subsequently tmux install hanging) with old
git versions. Fixes #7.

v1.2.0, 2014-11-20

	refactor tests so they can be used on travis

	add travis.yml, add travis badge to the readme

v1.1.0, 2014-11-19

	if the plugin is not downloaded do not source it

	remove PLUGINS.md, an obsolete list of plugins

	update readme with instructions about uninstalling plugins

	tilde char and $HOME in TMUX_SHARED_MANAGER_PATH couldn’t be used because
they are just plain strings. Fixing the problem by manually expanding them.

	bugfix: fragile *.tmux file globbing (@majutsushi)

v1.0.0, 2014-08-05

	update readme because of github organization change to
tmux-plugins [https://github.com/tmux-plugins]

	update tests to pass

	update README to suggest different first plugin

	update list of plugins in the README

	remove README ‘about’ section

	move key binding to the main file. Delete key_binding.sh.

	rename display_message -> echo_message

	installing plugins installs just new plugins. Already installed plugins aren’t
updated.

	add ‘update plugin’ binding and functionality

	add test for updating a plugin

v0.0.2, 2014-07-17

	run all *.tmux plugin files as executables

	fix all redirects to /dev/null

	fix bug: TPM shared path is created before sync (cloning plugins from github
is done)

	add test suite running in Vagrant

	add Tmux version check. TPM won’t run if Tmux version is less than 1.9.

v0.0.1, 2014-05-21

	get TPM up and running

 Instructions moved to
docs/how_to_create_plugin.md.

 MIT license
Copyright (C) 2014 Bruno Sutic

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the “Software”),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Tmux Plugin Manager

[image: https://travis-ci.org/tmux-plugins/tpm.svg?branch=master]Build Status [https://travis-ci.org/tmux-plugins/tpm]

Installs and loads tmux plugins.

Tested and working on Linux, OSX, and Cygwin.

See list of plugins here [https://github.com/tmux-plugins/list].

Installation

Requirements: tmux version 1.9 (or higher), git, bash.

Clone TPM:

git clone https://github.com/tmux-plugins/tpm ~/.tmux/plugins/tpm

Put this at the bottom of ~/.tmux.conf ($XDG_CONFIG_HOME/tmux/tmux.conf
works too):

List of plugins
set -g @plugin 'tmux-plugins/tpm'
set -g @plugin 'tmux-plugins/tmux-sensible'

Other examples:
set -g @plugin 'github_username/plugin_name'
set -g @plugin 'github_username/plugin_name#branch'
set -g @plugin 'git@github.com:user/plugin'
set -g @plugin 'git@bitbucket.com:user/plugin'

Initialize TMUX plugin manager (keep this line at the very bottom of tmux.conf)
run '~/.tmux/plugins/tpm/tpm'

Reload TMUX environment so TPM is sourced:

type this in terminal if tmux is already running
tmux source ~/.tmux.conf

That’s it!

Installing plugins

	Add new plugin to ~/.tmux.conf with set -g @plugin '...'

	Press prefix + I (capital i, as in Install) to fetch the plugin.

You’re good to go! The plugin was cloned to ~/.tmux/plugins/ dir and sourced.

Uninstalling plugins

	Remove (or comment out) plugin from the list.

	Press prefix + alt + u (lowercase u as in uninstall) to remove the plugin.

All the plugins are installed to ~/.tmux/plugins/ so alternatively you can
find plugin directory there and remove it.

Key bindings

prefix + I

	Installs new plugins from GitHub or any other git repository

	Refreshes TMUX environment

prefix + U

	updates plugin(s)

prefix + alt + u

	remove/uninstall plugins not on the plugin list

Docs

	Help, tpm not working - problem solutions

More advanced features and instructions, regular users probably do not need
this:

	How to create a plugin. It’s easy.

	Managing plugins via the command line

	Changing plugins install dir

	Automatic TPM installation on a new machine

Tests

Tests for this project run on Travis CI [https://travis-ci.org/tmux-plugins/tpm].

When run locally, vagrant [https://www.vagrantup.com/] is required.
Run tests with:

within project directory
./run_tests

License

MIT

Automatic tpm installation

One of the first things we do on a new machine is cloning our dotfiles. Not everything comes with them though, so for example tpm most likely won’t be installed.

If you want to install tpm and plugins automatically when tmux is started, put the following snippet in .tmux.conf before the final run '~/.tmux/plugins/tpm/tpm':

if "test ! -d ~/.tmux/plugins/tpm" \
 "run 'git clone https://github.com/tmux-plugins/tpm ~/.tmux/plugins/tpm && ~/.tmux/plugins/tpm/bin/install_plugins'"

This useful tip was submitted by @acr4 and narfman0.

Changing plugins install dir

By default, TPM installs plugins in a subfolder named plugins/ inside
$XDG_CONFIG_HOME/tmux/ if a tmux.conf file was found at that location, or
inside ~/.tmux/ otherwise.

You can change the install path by putting this in .tmux.conf:

set-environment -g TMUX_PLUGIN_MANAGER_PATH '/some/other/path/'

Tmux plugin manager initialization in .tmux.conf should also be updated:

initializes TMUX plugin manager in a new path
run /some/other/path/tpm/tpm

Please make sure that the run line is at the very bottom of .tmux.conf.

How to create Tmux plugins

Creating a new plugin is easy.

For demonstration purposes we’ll create a simple plugin that lists all
installed TPM plugins. Yes, a plugin that lists plugins :) We’ll bind that to
prefix + T.

The source code for this example plugin can be found
here [https://github.com/tmux-plugins/tmux-example-plugin].

1. create a new git project

TPM depends on git for downloading and updating plugins.

To create a new git project:

$ mkdir tmux_my_plugin
$ cd tmux_my_plugin
$ git init

2. create a *.tmux plugin run file

When it sources a plugin, TPM executes all *.tmux files in your plugins’
directory. That’s how plugins are run.

Create a plugin run file in plugin directory:

$ touch my_plugin.tmux
$ chmod u+x my_plugin.tmux

You can have more than one *.tmux file, and all will get executed. However, usually
you’ll need just one.

3. create a plugin key binding

We want the behavior of the plugin to trigger when a user hits prefix + T.

Key T is chosen because:

	it’s “kind of” a mnemonic for TPM

	the key is not used by Tmux natively. Tmux man page, KEY BINDINGS section
contains a list of all the bindings Tmux uses. There’s plenty of unused keys
and we don’t want to override any of Tmux default key bindings.

Open the plugin run file in your favorite text editor:

$ vim my_plugin.tmux
or
$ subl my_plugin.tmux

Put the following content in the file:

#!/usr/bin/env bash

CURRENT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
tmux bind-key T run-shell "$CURRENT_DIR/scripts/tmux_list_plugins.sh"

As you can see, plugin run file is a simple bash script that sets up the binding.

When pressed, prefix + T will execute another shell script:
tmux_list_plugins.sh. That script should be in scripts/ directory -
relative to the plugin run file.

4. listing plugins

Now that we have the binding, let’s create a script that’s invoked with
prefix + T.

$ mkdir scripts
$ touch scripts/tmux_list_plugins.sh
$ chmod u+x scripts/tmux_list_plugins.sh

And here’s the script content:

#!/usr/bin/env bash

fetching the directory where plugins are installed
plugin_path="$(tmux show-env -g TMUX_PLUGIN_MANAGER_PATH | cut -f2 -d=)"

listing installed plugins
ls -1 "$plugin_path"

5. try it out

To see if this works, execute the plugin run file:

$./my_plugin.tmux

That should set up the key binding. Now hit prefix + T and see if it works.

6. publish the plugin

When everything is ready, push the plugin to an online git repository,
preferably GitHub.

Other users can install your plugin by just adding plugin git URL to the
@plugin list in their .tmux.conf.

If the plugin is on GitHub, your users will be able to use the shorthand of
github_username/repository.

Conclusion

Hopefully, that was easy. As you can see, it’s mostly shell scripting.

You can use other scripting languages (ruby, python etc) but plain old shell
is preferred because of portability.

Managing plugins via the command line

Aside from tmux key bindings, TPM provides shell interface for managing plugins
via scripts located in bin/ directory.

Tmux does not need to be started in order to run scripts (but it’s okay if it
is). If you changed tpm install dir
in .tmux.conf that should work fine too.

Prerequisites:

	tmux installed on the system (doh)

	.tmux.conf set up for TPM

Installing plugins

As usual, plugins need to be specified in .tmux.conf. Run the following
command to install plugins:

~/.tmux/plugins/tpm/bin/install_plugins

Updating plugins

To update all installed plugins:

~/.tmux/plugins/tpm/bin/update_plugins all

or update a single plugin:

~/.tmux/plugins/tpm/bin/update_plugins tmux-sensible

Removing plugins

To remove plugins not on the plugin list:

~/.tmux/plugins/tpm/bin/clean_plugins

Help, tpm not working!

Here’s the list of issues users had with tpm:

Nothing works. tpm key bindings prefix + I, prefix + U not even
defined.

Related issue #22 [https://github.com/tmux-plugins/tpm/issues/22]

	Do you have required tmux version to run tpm?

Check tmux version with $ tmux -V command and make sure it’s higher or
equal to the required version for tpm as stated in the readme.

	ZSH tmux plugin might be causing issues.

If you have it installed, try disabling it and see if tpm works then.

Help, I’m using custom config file with tmux -f /path/to/my_tmux.conf
to start Tmux and for some reason plugins aren’t loaded!?

Related issue #57 [https://github.com/tmux-plugins/tpm/issues/57]

tpm has a known issue when using custom config file with -f option.
The solution is to use alternative plugin definition syntax. Here are the steps
to make it work:

	remove all set -g @plugin lines from tmux config file

	in the config file define the plugins in the following way:

 # List of plugins
 set -g @tpm_plugins ' \
 tmux-plugins/tpm \
 tmux-plugins/tmux-sensible \
 tmux-plugins/tmux-resurrect \
 '

 # Initialize TMUX plugin manager (keep this line at the very bottom of tmux.conf)
 run '~/.tmux/plugins/tpm/tpm'

	Reload TMUX environment so TPM is sourced: $ tmux source /path/to/my_tmux.conf

The plugins should now be working.

Weird sequence of characters show up when installing or updating plugins

Related: issue #25 [https://github.com/tmux-plugins/tpm/issues/25]

	This could be caused by tmuxline.vim [https://github.com/edkolev/tmuxline.vim]
plugin. Uninstall it and see if things work.

“failed to connect to server” error when sourcing .tmux.conf

Related: issue #48 [https://github.com/tmux-plugins/tpm/issues/48]

	Make sure tmux source ~/.tmux.conf command is ran from inside tmux.

tpm not working: ‘~/.tmux/plugins/tpm/tpm’ returned 2 (Windows / Cygwin)

Related: issue #81 [https://github.com/tmux-plugins/tpm/issues/81]

This issue is most likely caused by Windows line endings. For example, if you
have git’s core.autocrlf option set to true, git will automatically convert
all the files to Windows line endings which might cause a problem.

The solution is to convert all line ending to Unix newline characters. This
command handles that for all files under .tmux/ dir (skips .git
subdirectories):

find ~/.tmux -type d -name '.git*' -prune -o -type f -print0 | xargs -0 dos2unix

‘~/.tmux/plugins/tpm/tpm’ returned 127 (on macOS, w/ tmux installed using brew)

Related: issue #67 [https://github.com/tmux-plugins/tpm/issues/67]

This problem is because tmux’s run-shell command runs a shell which doesn’t read from user configs, thus tmux installed in /usr/local/bin will not be found.

The solution is to insert the following line:

set-environment -g PATH "/usr/local/bin:/bin:/usr/bin"

before any run-shell/run commands in ~/.tmux.conf.

Changelog

master

	move setup task to .travis.yml for travis tests

	“merge” travis.yml and travis_for_plugins.yml files (no need to keep em
separate)

	add more useful helper functions

	remove tmux-test repo as a submodule from self, this causes issues with
$ git submodule update --recursive --init command that some users use for
managing other plugins

	add new helper teardown_helper

	add run_tests helper

	change CLI syntax for choosing vagrant machine to run the tests on

	enable running just a single test via run_tests cli interface

	add --keep-running cli option to continue running vagrant after the tests
are done executing

	start using tmux 2.0 for tests

v0.2.0, 2015-02-22

	setup script gitignores tests/helpers.sh

	move tests/helpers.sh to tests/helpers/helpers.sh

	setup undo removes added lines from gitignore file

v0.1.0, 2015-02-22

	changes so that ‘tmux-test’ can be included with tmux plugins

	do not gitignore submodules directory

	add installation and usage instructions

	copy .travis.yml to the project root when running setup script

	add a brief mention of travis CI to the readme

	add test helpers

	setup script symlinks helpers file to tests/ directory

	setup script can undo most of its actions

	add a tmux scripting test

	tmux-test uses tmux-test to test itself

	update tmux-test submodule

	a different travis.yml for tmux-test and for plugins

v0.0.1, 2015-02-21

	git init

	add vagrant provisioning scripts for ubuntu and debian

	add a “.travis.yml” file

	generic “run_tests” script

	“run_tests_in_isolation” script

	add “Vagrantfile”

	enable passing VM names as arguments to “run_tests” script

 Copyright (C) Bruno Sutic

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the “Software”),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

tmux-test

[image: https://travis-ci.org/tmux-plugins/tmux-test.png?branch=master]Build Status [https://travis-ci.org/tmux-plugins/tmux-test]

A small framework for isolated testing of tmux plugins. Isolation is achieved by
running the tests in Vagrant. Works on travis too.

Extracted from tmux plugin manager [https://github.com/tmux-plugins/tpm] and
tmux-copycat [https://github.com/tmux-plugins/tmux-copycat].

Dependencies: Vagrant (no required when running on travis).

Setup

Let’s say you made tmux plugin with the following file hierarchy:

/tmux-plugin
|-- plugin.tmux
`-- scripts
 `-- plugin_script.sh

From your project root directory (tmux-plugin/) execute the following shell
command to fetch tmux-test and add it as a submodule:

$ git submodule add https://github.com/tmux-plugins/tmux-test.git lib/tmux-test

Run the setup script:

$ lib/tmux-test/setup

The project directory will now look like this (additions have comments):

/tmux-plugin
|-- plugin.tmux
|-- run_tests # symlink, gitignored
|-- .gitignore # 2 lines appended to gitignore
|-- .travis.yml # added
|-- lib/tmux-test/ # git submodule
|-- scripts
| `-- plugin_script.sh
`-- tests # dir to put the tests in
 `-- run_tests_in_isolation.sh # symlink, gitignored
 `-- helpers
 `-- helpers.sh # symlinked bash helpers, gitignored

tmux-test is now set up. You are ok to commit the additions to the repo.

Writing and running tests

A test is any executable with a name starting with test_ in tests/
directory.

Now that you installed tmux-test let’s create an example test.

	create a tests/test_example.sh file with the following content (it’s a
bash script but it can be any executable):

 #/usr/bin/env bash

 CURRENT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

 # bash helpers provided by 'tmux-test'
 source $CURRENT_DIR/helpers/helpers.sh

 # installs plugin from current repo in Vagrant (or on Travis)
 install_tmux_plugin_under_test_helper

 # start tmux in background (plugin under test is sourced)
 tmux new -d

 # get first session name
 session_name="$(tmux list-sessions -F "#{session_name}")"

 # fail the test if first session name is not "0"
 if ["$session_name" == "0"]; then
 # fail_helper is also provided by 'tmux-test'
 fail_helper "First session name is not '0' by default"
 fi

 # sets the right script exit code ('tmux-test' helper)
 exit_helper

	make the test file executable with $ chmod +x tests/test_example.sh

	run the test by executing ./run_tests from the project root directory

	the first invocation might take some time because Vagrant’s ubuntu virtual
machine is downloading. You should see Success, tests pass! message when it’s
done.

Check out more example test scripts in this project’s tests/ directory.

Continuous integration

The setup script (lib/tmux-test/setup) added a .travis.yml file to the
project root. To setup continuous integration, just add/enable the project on
travis.

Notes

	The tests/ directory for tests and lib/tmux-test/ for cloning tmux-test
into cannot be changed currently

	Don’t run tests/run_tests_in_isolation script on your local development
environment. That’s an internal test runner meant to be executed in an
isolated environment like vagrant or travis.

Use ./run_tests script.

	You can use KEEP_RUNNING=true ./run_tests for faster test running cycle.
If this case Vagrant will keep running even after the tests are done.

	You can use VAGRANT_CWD=lib/tmux-text/ vagrant ssh ubuntu for ssh login to
Vagrant.

Running tmux-test framework tests

tmux-test uses itself to test itself. To run framework tests:

	clone this project $ git clone git@github.com:tmux-plugins/tmux-test.git

	$ cd tmux-test

	run $./run_framework_tests

Other goodies

	tmux-copycat [https://github.com/tmux-plugins/tmux-copycat] - a plugin for
regex searches in tmux and fast match selection

	tmux-continuum [https://github.com/tmux-plugins/tmux-continuum] - automatic
restoring and continuous saving of tmux env

You might want to follow @brunosutic [https://twitter.com/brunosutic] on
twitter if you want to hear about new tmux plugins or feature updates.

License

MIT

Pull Requests

	Please squash your commits to minimize the log pollution. This is more of a convenience for the maintainer who pulls. If you are unfamiliar, see here [http://ariejan.net/2011/07/05/git-squash-your-latests-commits-into-one/].

	Clearly describe what you aim to fix or add to Vundle.

	Try to minimize code changes and use existing style/functions.

Issues

Check For Answers

Before submitting an issue, be sure to check the following places for answers.

	Vundle docs at :h vundle [https://github.com/VundleVim/Vundle.vim/blob/master/doc/vundle.txt].

	The FAQ [https://github.com/VundleVim/Vundle.vim/wiki].

	Search [https://github.com/VundleVim/Vundle.vim/search] the repository for related issues.

Try To Eliminate Your Vimrc

In order to make sure it isn’t just .vimrc replace your own config file with the minimal vimrc [https://github.com/VundleVim/Vundle.vim/blob/master/test/minirc.vim]. Clear out bundles and then try to reproduce.

If the problem stops, likely there is an issue in your user configuration. You can incrementally add back your user changes to the minimal file testing the bug each time. This will allow you to slowly bisect the issue. You may want to test one plugin at a time.

If you can still reproduce the problem, try to find the smallest .vimrc config file that creates the problem to include later.

Guidelines

To better respond to issues please follow these general guidelines when explaining the problem.

	Clearly describe what the error is, if relevant attach output/screenshots.

	Describe how developers can reproduce the bug, the steps should be from starting Vim.

	Include your OS, version and architecture. For example, Windows 7 64, Kubuntu 13.04 32, etc…

	If relevant to reproducing the bug, include the smallest subset of your .vimrc that causes the issue. Put this in code tags.

	At the end of your issue, please put the output of vim --version in code tags.

Example Post

I am using Vim on Kubuntu 13.04 64 bit and I get the following error… (add further explanation here)

To reproduce the bug, use the vimrc file below and run :PluginInstall… (continue with steps)

Vimrc:

set nocompatible
syntax on
filetype off
set rtp+=~/.vim/bundle/Vundle.vim/
call vundle#rc()
Plugin 'VundleVim/Vundle.vim'
Plugin 'relevant/plugin'
filetype plugin indent on

.... more user configs here...

Vim Version:

VIM - Vi IMproved 7.4 (2013 Aug 10, compiled Aug 15 2013 10:58:39)
Included patches: 1-5
Modified by pkg-vim-maintainers@lists.alioth.debian.org
Compiled by buildd@
Huge version with GTK2 GUI. Features included (+) or not (-):
+arabic +file_in_path +mouse_sgr +tag_binary
+autocmd +find_in_path -mouse_sysmouse +tag_old_static
+balloon_eval +float +mouse_urxvt -tag_any_white
+browse +folding +mouse_xterm +tcl
++builtin_terms -footer +multi_byte +terminfo
+byte_offset +fork() +multi_lang +termresponse
+cindent +gettext -mzscheme +textobjects
+clientserver -hangul_input +netbeans_intg +title
+clipboard +iconv +path_extra +toolbar
+cmdline_compl +insert_expand +perl +user_commands
+cmdline_hist +jumplist +persistent_undo +vertsplit
+cmdline_info +keymap +postscript +virtualedit
+comments +langmap +printer +visual
+conceal +libcall +profile +visualextra
+cryptv +linebreak +python +viminfo
+cscope +lispindent -python3 +vreplace
+cursorbind +listcmds +quickfix +wildignore
+cursorshape +localmap +reltime +wildmenu
+dialog_con_gui +lua +rightleft +windows
+diff +menu +ruby +writebackup
+digraphs +mksession +scrollbind +X11
+dnd +modify_fname +signs -xfontset
-ebcdic +mouse +smartindent +xim
+emacs_tags +mouseshape -sniff +xsmp_interact
+eval +mouse_dec +startuptime +xterm_clipboard
+ex_extra +mouse_gpm +statusline -xterm_save
+extra_search -mouse_jsbterm -sun_workshop
+farsi +mouse_netterm +syntax
 system vimrc file: "$VIM/vimrc"
 user vimrc file: "$HOME/.vimrc"
 2nd user vimrc file: "~/.vim/vimrc"
 user exrc file: "$HOME/.exrc"
 system gvimrc file: "$VIM/gvimrc"
 user gvimrc file: "$HOME/.gvimrc"
2nd user gvimrc file: "~/.vim/gvimrc"
 system menu file: "$VIMRUNTIME/menu.vim"
 fall-back for $VIM: "/usr/share/vim"
Compilation: gcc -c -I. -Iproto -DHAVE_CONFIG_H -DFEAT_GUI_GTK -pthread -I/usr/include/gtk-2.0 -I/usr/lib/x86_64-linux-gnu/gtk-2.0/include -I/usr/include/atk-1.0 -I/usr/include/cairo -I/usr/include/gdk-pixbuf-2.0 -I/usr/include/pango-1.0 -I/usr/include/gio-unix-2.0/ -I/usr/include/glib-2.0 -I/usr/lib/x86_64-linux-gnu/glib-2.0/include -I/usr/include/pixman-1 -I/usr/include/freetype2 -I/usr/include/libpng12 -I/usr/include/harfbuzz -g -O2 -fstack-protector --param=ssp-buffer-size=4 -Wformat -Werror=format-security -U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=1 -I/usr/include/tcl8.5 -D_REENTRANT=1 -D_THREAD_SAFE=1 -D_LARGEFILE64_SOURCE=1
Linking: gcc -L. -Wl,-Bsymbolic-functions -Wl,-z,relro -rdynamic -Wl,-export-dynamic -Wl,-E -Wl,-Bsymbolic-functions -Wl,-z,relro -Wl,--as-needed -o vim -lgtk-x11-2.0 -lgdk-x11-2.0 -latk-1.0 -lgio-2.0 -lpangoft2-1.0 -lpangocairo-1.0 -lgdk_pixbuf-2.0 -lcairo -lpango-1.0 -lfreetype -lfontconfig -lgobject-2.0 -lglib-2.0 -lSM -lICE -lXpm -lXt -lX11 -lXdmcp -lSM -lICE -lm -ltinfo -lnsl -lselinux -lacl -lattr -lgpm -ldl -L/usr/lib -llua5.1 -Wl,-E -fstack-protector -L/usr/local/lib -L/usr/lib/perl/5.14/CORE -lperl -ldl -lm -lpthread -lcrypt -L/usr/lib/python2.7/config-x86_64-linux-gnu -lpython2.7 -lpthread -ldl -lutil -lm -Xlinker -export-dynamic -Wl,-O1 -Wl,-Bsymbolic-functions -L/usr/lib/x86_64-linux-gnu -ltcl8.5 -ldl -lpthread -lieee -lm -lruby-1.9.1 -lpthread -lrt -ldl -lcrypt -lm -L/usr/lib

Help Maintain Vundle [https://github.com/VundleVim/Vundle.vim/issues/383]

Table of Contents

	About

	Quick Start

	Docs

	Changelog

	People Using Vundle

	Contributors

	Inspiration & Ideas

	Also

	TODO

About

Vundle [http://github.com/VundleVim/Vundle.vim] is short for Vim bundle and is a Vim [http://www.vim.org] plugin manager.

Vundle [http://github.com/VundleVim/Vundle.vim] allows you to…

	keep track of and configure [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L126-L233] your plugins right in the .vimrc

	install [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L234-L254] configured plugins (a.k.a. scripts/bundle)

	update [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L255-L265] configured plugins

	search [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L266-L295] by name all available Vim scripts [http://vim-scripts.org/vim/scripts.html]

	clean [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L303-L318] unused plugins up

	run the above actions in a single keypress with interactive mode [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L319-L360]

Vundle [http://github.com/VundleVim/Vundle.vim] automatically…

	manages the runtime path [http://vimdoc.sourceforge.net/htmldoc/options.html#%27runtimepath%27] of your installed scripts

	regenerates help tags [http://vimdoc.sourceforge.net/htmldoc/helphelp.html#:helptags] after installing and updating

Vundle [http://github.com/VundleVim/Vundle.vim] is undergoing an interface change [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L372-L396], please stay up to date to get latest changes.

[image: https://badges.gitter.im/VundleVim/Vundle.vim.svg]Gitter-chat [https://gitter.im/VundleVim/Vundle.vim] for discussion and support.

[image: http://i.imgur.com/Rueh7Cc.png]Vundle-installer

Quick Start

	Introduction:

Installation requires Git [http://git-scm.com] and triggers git clone [http://gitref.org/creating/#clone] for each configured repository to ~/.vim/bundle/ by default.
Curl is required for search.

If you are using Windows, go directly to Windows setup [https://github.com/VundleVim/Vundle.vim/wiki/Vundle-for-Windows]. If you run into any issues, please consult the FAQ [https://github.com/VundleVim/Vundle.vim/wiki].
See Tips [https://github.com/VundleVim/Vundle.vim/wiki/Tips-and-Tricks] for some advanced configurations.

Using non-POSIX shells, such as the popular Fish shell, requires additional setup. Please check the FAQ [https://github.com/VundleVim/Vundle.vim/wiki].

	Set up Vundle [http://github.com/VundleVim/Vundle.vim]:

 git clone https://github.com/VundleVim/Vundle.vim.git ~/.vim/bundle/Vundle.vim

	Configure Plugins:

Put this at the top of your .vimrc to use Vundle. Remove plugins you don’t need, they are for illustration purposes.

set nocompatible " be iMproved, required
filetype off " required

" set the runtime path to include Vundle and initialize
set rtp+=~/.vim/bundle/Vundle.vim
call vundle#begin()
" alternatively, pass a path where Vundle should install plugins
"call vundle#begin('~/some/path/here')

" let Vundle manage Vundle, required
Plugin 'VundleVim/Vundle.vim'

" The following are examples of different formats supported.
" Keep Plugin commands between vundle#begin/end.
" plugin on GitHub repo
Plugin 'tpope/vim-fugitive'
" plugin from http://vim-scripts.org/vim/scripts.html
" Plugin 'L9'
" Git plugin not hosted on GitHub
Plugin 'git://git.wincent.com/command-t.git'
" git repos on your local machine (i.e. when working on your own plugin)
Plugin 'file:///home/gmarik/path/to/plugin'
" The sparkup vim script is in a subdirectory of this repo called vim.
" Pass the path to set the runtimepath properly.
Plugin 'rstacruz/sparkup', {'rtp': 'vim/'}
" Install L9 and avoid a Naming conflict if you've already installed a
" different version somewhere else.
" Plugin 'ascenator/L9', {'name': 'newL9'}

" All of your Plugins must be added before the following line
call vundle#end() " required
filetype plugin indent on " required
" To ignore plugin indent changes, instead use:
"filetype plugin on
"
" Brief help
" :PluginList - lists configured plugins
" :PluginInstall - installs plugins; append `!` to update or just :PluginUpdate
" :PluginSearch foo - searches for foo; append `!` to refresh local cache
" :PluginClean - confirms removal of unused plugins; append `!` to auto-approve removal
"
" see :h vundle for more details or wiki for FAQ
" Put your non-Plugin stuff after this line

	Install Plugins:

Launch vim and run :PluginInstall

To install from command line: vim +PluginInstall +qall

	(optional) For those using the fish shell: add set shell=/bin/bash to your .vimrc

Docs

See the :h vundle [https://github.com/VundleVim/Vundle.vim/blob/master/doc/vundle.txt] Vimdoc for more details.

Changelog

See the changelog [https://github.com/VundleVim/Vundle.vim/blob/master/changelog].

People Using Vundle

see Examples [https://github.com/VundleVim/Vundle.vim/wiki/Examples]

Contributors

see Vundle contributors [https://github.com/VundleVim/Vundle.vim/graphs/contributors]

Thank you!

Inspiration & Ideas

	pathogen.vim [http://github.com/tpope/vim-pathogen/]

	Bundler [https://github.com/bundler/bundler]

	Scott Bronson [http://github.com/bronson]

Also

	Vundle was developed and tested with Vim [http://www.vim.org] 7.3 on OS X, Linux and Windows

	Vundle tries to be as KISS [http://en.wikipedia.org/wiki/KISS_principle] as possible

TODO

Vundle [http://github.com/VundleVim/Vundle.vim] is a work in progress, so any ideas and patches are appreciated.

	[x] activate newly added bundles on .vimrc reload or after :PluginInstall

	[x] use preview window for search results

	[x] Vim documentation

	[x] put Vundle in bundles/ too (will fix Vundle help)

	[x] tests

	[x] improve error handling

	[] allow specifying revision/version?

	[] handle dependencies

	[] show description in search results

	[] search by description as well

	[] make it rock!

Vundle 유지보수 돕기 [https://github.com/VundleVim/Vundle.vim/issues/383]

소개

Vundle [http://github.com/VundleVim/Vundle.vim] 은 Vim bundle 의 약자로 Vim [http://www.vim.org] 플러그인 매니저입니다.

Vundle [http://github.com/VundleVim/Vundle.vim] 은 다음 기능들을 제공합니다.

	.vimrc에 직접 플러그인들의 기록을 남기고 환경설정 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L126-L233]하기

	플러그인들을 설치 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L234-L254]하기 (scripts/bundle 와 같음)

	플러그인들을 업데이트 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L255-L265]하기

	사용 가능한 Vim scripts [http://vim-scripts.org/vim/scripts.html]를 이름으로 검색 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L266-L295]하기

	사용하지 않는 플러그인들을 정리 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L303-L318]하기

	interactive 모드 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L319-L360]에서 위 기능들을 하나의 키 로 실행하기

Vundle [http://github.com/VundleVim/Vundle.vim]은 자동으로 다음을 수행합니다.

	설치된 스크립트들의 runtime 경로 [http://vimdoc.sourceforge.net/htmldoc/options.html#%27runtimepath%27]를 관리합니다

	설치 및 업데이트 후 도움말 태그 [http://vimdoc.sourceforge.net/htmldoc/helphelp.html#:helptags]를 재생성합니다

Vundle [http://github.com/VundleVim/Vundle.vim]은 현재 인터페이스 수정 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L372-L396] 중 입니다. 최신 변경 사항을 적용하기위해 항상 최신 상태로 유지하십시오.

토론 및 지원 : [image: https://badges.gitter.im/VundleVim/Vundle.vim.svg]Gitter-chat [https://gitter.im/VundleVim/Vundle.vim]

[image: http://i.imgur.com/Rueh7Cc.png]Vundle-installer

빠른 시작

	시작하기:

Vundle을 설치하기 위해선 Git [http://git-scm.com]이 필요합니다.
설치 과정에서 각각의 저장소를 ~/.vim/bundle/ 경로에 기본값으로 git clone [http://gitref.org/creating/#clone]합니다.
검색 기능을 위해 Curl이 필요합니다.

Windows 사용자라면, 윈도우에서 설치 [https://github.com/VundleVim/Vundle.vim/wiki/Vundle-for-Windows] 문서를 참조하십시오. 만약 어떤 문제라도 발생한다면, 자주 묻는 질문 [https://github.com/VundleVim/Vundle.vim/wiki]에 도움을 요청하십시오.
좀 더 나은 환경설정을 위해 도움말 [https://github.com/VundleVim/Vundle.vim/wiki/Tips-and-Tricks]을 참조하십시오.

Fish shell과 같은 non-POSIX shell을 사용한다면, 추가적인 설치가 필요합니다. 자주 묻는 질문 [https://github.com/VundleVim/Vundle.vim/wiki]을 확인하십시오.

	Vundle [http://github.com/VundleVim/Vundle.vim] 설치하기:

$ git clone https://github.com/VundleVim/Vundle.vim.git ~/.vim/bundle/Vundle.vim

	플러그인 설정하기:

Vundle을 사용하기 위해 다음을 .vimrc 파일의 첫 줄에 붙여넣으십시오. 필요 없는 플러그인들을 삭제하십시오. 다음은 예시입니다.

set nocompatible " Vi와 호환 불가 설정, 필수
filetype off " 필수

" Vundle을 포함시키기 위해 runtime 경로를 설정하고 초기화
set rtp+=~/.vim/bundle/Vundle.vim
call vundle#begin()
" 기존 경로 대신 Vundle이 플러그인을 설치할 경로를 입력하십시오.
"call vundle#begin('~/some/path/here')

" Vundle이 스스로를 관리하도록 설정, 필수
Plugin 'VundleVim/Vundle.vim'

" 아래는 지원되는 여러 형식들의 예시입니다
" 플러그인 명령어를 vundle#begin/end 사이에 추가하십시오
" GitHub 저장소에 있는 플러그인
Plugin 'tpope/vim-fugitive'
" http://vim-scripts.org/vim/scripts.html 에 있는 플러그인
" 'L9' 플러그인
" GitHub에 호스트 되어있지 않는 Git 플러그인
Plugin 'git://git.wincent.com/command-t.git'
" 사용하는 기기의 git 저장소 (당신만의 플러그인을 사용할 때)
Plugin 'file:///home/gmarik/path/to/plugin'
" sparkup vim script는 vim 이란 이름의 저장소 하위 디렉토리 내부에 있습니다.
" 정확한 runtime 경로를 입력하십시오.
Plugin 'rstacruz/sparkup', {'rtp': 'vim/'}
" L9를 설치하고, 만약 당신이 다른 버전을 어딘가 설치했을 경우 발생하는 이름 충돌 문제를 방지합니다
" Plugin 'ascenator/L9', {'name': 'newL9'}

" 당신의 모든 플러그인은 다음 명령어 이전에 추가되어야 합니다
call vundle#end() " 필수
filetype plugin indent on " 필수
" 플러그인의 들여쓰기 변화를 무시하려면, 대신 이 명령어를 사용하십시오:
"filetype plugin on
"
" 간단한 도움말
" :PluginList - 설정된 플러그인의 리스트
" :PluginInstall - 플러그인 설치; 업데이트를 하려면 `!`를 덧붙이거나 :PluginUpdate 명령을 사용하십시오
" :PluginSearch foo - foo에 대해 검색; `!`를 덧붙여 로컬 캐시를 새로고침하십시오
" :PluginClean - 사용하지 않는 플러그인의 삭제를 확인; `!`를 붙여 자동 삭제를 승인하십시오
"
" 더 자세한 내용은 :h vundle 문서나 wiki의 FAQ를 확인하십시오
" 다음 줄부터 플러그인이 아닌 내용을 넣으십시오

	플러그인 설치:

vim을 켠 후 :PluginInstall을 실행하십시오.

명령줄에서 설치: vim +PluginInstall +qall

	(선택) fish shell 사용시: .vimrc내에 set shell=/bin/bash을 추가하십시오.

문서

더 자세한 내용은 :h vundle [https://github.com/VundleVim/Vundle.vim/blob/master/doc/vundle.txt] 문서를 참조하십시오.

변경 로그

변경 로그 [https://github.com/VundleVim/Vundle.vim/blob/master/changelog]을 확인하십시오.

Vundle을 사용하는 사람들

예시 [https://github.com/VundleVim/Vundle.vim/wiki/Examples]를 확인하십시오.

기여자

Vundle 기여자 명단 [https://github.com/VundleVim/Vundle.vim/graphs/contributors]을 확인하십시오.

감사합니다!

아이디어 및 영감

	pathogen.vim [http://github.com/tpope/vim-pathogen/]

	Bundler [https://github.com/bundler/bundler]

	Scott Bronson [http://github.com/bronson]

기타

	Vundle은 Vim [http://www.vim.org] 버젼 7.3으로 OS X, Linux 및 Windows에서 개발 및 테스트 되었습니다.

	Vundle은 최대한 KISS [http://en.wikipedia.org/wiki/KISS_principle] 원칙을 준수합니다.

할일:

Vundle [http://github.com/VundleVim/Vundle.vim]은 현재 개발이 진행 중 입니다. 그러니 어떤 아이디어이든 개선점이든 알려주시면 감사하겠습니다.

	[x] :PluginInstall을 실행하거나 재실행 하였을 때 새로 추가된 플러그인들을 .vimrc에 새롭게 추가하는 기능 활성화

	[x] 미리보기 창에 검색 결과 띄우기

	[x] Vim 문서 작성

	[x] bundles/에 Vundle넣기 (Vundle 도움말이 수정됨)

	[x] 테스트

	[x] 에러 관리 개선

	[] 각 수정 및 버전의 명시를 가능하게?

	[] 의존성 관리

	[] 검색 결과에 설명 보여주기

	[] 설명으로 검색하기

	[] 존나 쩔게 만들기!

帮助维护Vundle [https://github.com/VundleVim/Vundle.vim/issues/383]

关于

Vundle [http://github.com/VundleVim/Vundle.vim] 是 Vim bundle 的简称,是一个 Vim [http://www.vim.org] 插件管理器：

Vundle [http://github.com/VundleVim/Vundle.vim] 允许你做…

	同时在.vimrc中跟踪和管理 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L126-L233]插件

	安装 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L234-L254]特定格式的插件(a.k.a. scripts/bundle)

	更新 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L255-L265]特定格式插件

	通过插件名称搜索 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L266-L295]Vim scripts [http://vim-scripts.org/vim/scripts.html]中的插件

	清理 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L303-L318]未使用的插件

	可以通过单一按键完成以上操作,详见interactive mode [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L319-L360]

Vundle [http://github.com/VundleVim/Vundle.vim] 自动完成…

	管理已安装插件的runtime path [http://vimdoc.sourceforge.net/htmldoc/options.html#%27runtimepath%27]

	安装和更新后,重新生成帮助标签 [http://vimdoc.sourceforge.net/htmldoc/helphelp.html#:helptags]

Vundle [http://github.com/VundleVim/Vundle.vim] 正在经历一个 interface change [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L372-L396], 请通过以下方式获取最新信息。

讨论和技术支持：[image: https://badges.gitter.im/VundleVim/Vundle.vim.svg]Gitter-chat [https://gitter.im/VundleVim/Vundle.vim]

[image: http://i.imgur.com/Rueh7Cc.png]Vundle-installer

快速开始

	介绍:

安装需要Git [http://git-scm.com/]，触发git clone [http://gitref.org/creating/#clone],默认将每一个指定特定格式插件的仓库复制到~/.vim/bundle/.
搜索需要Curl支持。

Windows用户请直接访问Windows setup [https://github.com/VundleVim/Vundle.vim/wiki/Vundle-for-Windows]. 如果有任何问题, 请参考 FAQ [https://github.com/VundleVim/Vundle.vim/wiki].
查看 Tips [https://github.com/VundleVim/Vundle.vim/wiki/Tips-and-Tricks] 获取相关高级配置。

使用 non-POSIX shells, 比如比较流行对 Fish shell, 需要额外对步骤。 请查看 FAQ [https://github.com/VundleVim/Vundle.vim/wiki].

	初始安装 Vundle [http://github.com/VundleVim/Vundle.vim]：

$ git clone https://github.com/VundleVim/Vundle.vim.git ~/.vim/bundle/Vundle.vim

	配置插件 :

请将以下加在 .vimrc 方可使用Vundle. 删掉你不需要的插件, 这些只是用做示例.

set nocompatible " 去除VI一致性,必须
filetype off " 必须

" 设置包括vundle和初始化相关的runtime path
set rtp+=~/.vim/bundle/Vundle.vim
call vundle#begin()
" 另一种选择, 指定一个vundle安装插件的路径
"call vundle#begin('~/some/path/here')

" 让vundle管理插件版本,必须
Plugin 'VundleVim/Vundle.vim'

" 以下范例用来支持不同格式的插件安装.
" 请将安装插件的命令放在vundle#begin和vundle#end之间.
" Github上的插件
" 格式为 Plugin '用户名/插件仓库名'
Plugin 'tpope/vim-fugitive'
" 来自 http://vim-scripts.org/vim/scripts.html 的插件
" Plugin '插件名称' 实际上是 Plugin 'vim-scripts/插件仓库名' 只是此处的用户名可以省略
Plugin 'L9'
" 由Git支持但不再github上的插件仓库 Plugin 'git clone 后面的地址'
Plugin 'git://git.wincent.com/command-t.git'
" 本地的Git仓库(例如自己的插件) Plugin 'file:///+本地插件仓库绝对路径'
Plugin 'file:///home/gmarik/path/to/plugin'
" 插件在仓库的子目录中.
" 正确指定路径用以设置runtimepath. 以下范例插件在sparkup/vim目录下
Plugin 'rstacruz/sparkup', {'rtp': 'vim/'}
" 安装L9，如果已经安装过这个插件，可利用以下格式避免命名冲突
Plugin 'ascenator/L9', {'name': 'newL9'}

" 你的所有插件需要在下面这行之前
call vundle#end() " 必须
filetype plugin indent on " 必须 加载vim自带和插件相应的语法和文件类型相关脚本
" 忽视插件改变缩进,可以使用以下替代:
"filetype plugin on
"
" 简要帮助文档
" :PluginList - 列出所有已配置的插件
" :PluginInstall - 安装插件,追加 `!` 用以更新或使用 :PluginUpdate
" :PluginSearch foo - 搜索 foo ; 追加 `!` 清除本地缓存
" :PluginClean - 清除未使用插件,需要确认; 追加 `!` 自动批准移除未使用插件
"
" 查阅 :h vundle 获取更多细节和wiki以及FAQ
" 将你自己对非插件片段放在这行之后

	安装插件:

运行 vim 再运行 :PluginInstall

通过命令行直接安装 vim +PluginInstall +qall

文档

查阅 :h vundle [https://github.com/VundleVim/Vundle.vim/blob/master/doc/vundle.txt] Vimdoc 以获取更多细节。

更新日志

查阅 changelog [https://github.com/VundleVim/Vundle.vim/blob/master/changelog].

在使用此插件的用户的VIMRC

查阅 Examples [https://github.com/VundleVim/Vundle.vim/wiki/Examples]

维护者

查阅 Vundle contributors [https://github.com/VundleVim/Vundle.vim/graphs/contributors]

感谢!

灵感 & 思路

	pathogen.vim [http://github.com/tpope/vim-pathogen/]

	Bundler [https://github.com/bundler/bundler]

	Scott Bronson [http://github.com/bronson]

另外

	Vundle 已测试环境为: Vim [http://www.vim.org] 7.3 on OS X, Linux and Windows

	Vundle 尝试尽可能保持至简模式 KISS [http://en.wikipedia.org/wiki/KISS_principle]

TODO:

Vundle [http://github.com/VundleVim/Vundle.vim] 是一个正在进步的项目, 所以很多设计思路和补丁是需要借鉴的.

	✓ 在重新载入或者执行:PluginInstall之后激活.vimrc中新添加的插件

	✓ 使用预览窗口显示搜索结果

	✓ Vim documentation

	✓ 同时将Vundle 放置在 bundles/ 中 (将修复 Vundle 帮助)

	✓ 测试

	✓ 提升错误处理能力

	支持手动指定版本(待考虑)

	版本依赖

	搜索结果中显示描述

	同时支持通过描述搜索

	使其更加稳定!

幫助維護Vundle [https://github.com/VundleVim/Vundle.vim/issues/383]

關於

Vundle [http://github.com/VundleVim/Vundle.vim] 是 Vim bundle 的簡稱,是一個 Vim [http://www.vim.org] 插件管理器.

Vundle [http://github.com/VundleVim/Vundle.vim] 允許你做…

	同時在.vimrc中跟蹤和管理 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L126-L233]插件

	安裝 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L234-L254]特定格式的插件(a.k.a. scripts/bundle)

	更新 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L255-L265]特定格式插件

	通過插件名稱搜尋 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L266-L295]Vim scripts [http://vim-scripts.org/vim/scripts.html]中的插件

	清理 [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L303-L318]未使用的插件

	可以通過單一按鍵完成以上操作,詳見interactive mode [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L319-L360]

Vundle [http://github.com/VundleVim/Vundle.vim] 自動完成…

	管理已安裝插件的runtime path [http://vimdoc.sourceforge.net/htmldoc/options.html#%27runtimepath%27]

	安裝和更新後,重新生成幫助標籤 [http://vimdoc.sourceforge.net/htmldoc/helphelp.html#:helptags]

Vundle [http://github.com/VundleVim/Vundle.vim] 正在經歷一個 interface change [https://github.com/VundleVim/Vundle.vim/blob/v0.10.2/doc/vundle.txt#L372-L396], 請通過以下方式獲取最新資訊.

討論和技術支援:[image: https://badges.gitter.im/VundleVim/Vundle.vim.svg]Gitter-chat [https://gitter.im/VundleVim/Vundle.vim]

[image: http://i.imgur.com/Rueh7Cc.png]Vundle-installer

快速開始

	介紹:

安裝需要Git [http://git-scm.com/],觸發git clone [http://gitref.org/creating/#clone],預設將每一個指定特定格式插件的倉庫複製到~/.vim/bundle/.
搜尋需要Curl支援.

Windows使用者請直接訪問Windows setup [https://github.com/VundleVim/Vundle.vim/wiki/Vundle-for-Windows]. 如果有任何問題, 請參考 FAQ [https://github.com/VundleVim/Vundle.vim/wiki].
檢視 Tips [https://github.com/VundleVim/Vundle.vim/wiki/Tips-and-Tricks] 獲取相關高級配置.

使用 non-POSIX shells (比如流行的 Fish shell) 需要額外步驟. 請檢視 FAQ [https://github.com/VundleVim/Vundle.vim/wiki].

	初始安裝 Vundle [http://github.com/VundleVim/Vundle.vim]:

$ git clone https://github.com/VundleVim/Vundle.vim.git ~/.vim/bundle/Vundle.vim

	配置插件 :

請將以下內容加在 .vimrc 頂部方可使用Vundle. 刪掉你不需要的插件, 以下只是示例.

set nocompatible " 去除VI一致性,必須
filetype off " 必須

" 設定 runtime path 以包含並初始化 Vundle
set rtp+=~/.vim/bundle/Vundle.vim
call vundle#begin()
" 另一種選擇, 指定 Vundle 安裝插件的路徑
"call vundle#begin('~/some/path/here')

" 讓 Vundle 管理自身,必須
Plugin 'VundleVim/Vundle.vim'

" 以下範例用來演示如何安裝不同來源的插件.
" 請將安裝插件的命令放在vundle#begin和vundle#end之間.
" Github上的插件
" 格式為 Plugin '使用者名/插件倉庫名'
Plugin 'tpope/vim-fugitive'
" 來自 http://vim-scripts.org/vim/scripts.html 的插件
" Plugin '插件名稱' 實際上是 Plugin 'vim-scripts/插件倉庫名' 只是此處的用戶名可以省略
Plugin 'L9'
" 不由 GitHub 託管的 Git 倉庫 Plugin 'git clone 後面的地址'
Plugin 'git://git.wincent.com/command-t.git'
" 本地的 Git 倉庫(例如自己的插件) Plugin 'file:///+本地插件倉庫絕對路徑'
Plugin 'file:///home/gmarik/path/to/plugin'
" 插件在倉庫的子目錄中.
" 指定路徑用以正確設定runtimepath. 以下範例插件在sparkup倉庫的vim目錄下
Plugin 'rstacruz/sparkup', {'rtp': 'vim/'}
" 安裝L9，如果已經安裝過這個插件，可利用以下格式避免命名衝突
Plugin 'ascenator/L9', {'name': 'newL9'}

" 你的所有插件需要在下面這行之前
call vundle#end() " 必須
filetype plugin indent on " 必須
" 要禁止插件改變縮排,可以使用下行替代:
"filetype plugin on
"
" 簡要幫助文檔
" :PluginList - 列出所有已配置的插件
" :PluginInstall - 安裝插件,追加 `!` 用以更新或使用 :PluginUpdate
" :PluginSearch foo - 搜尋 foo ; 追加 `!` 清除本地快取
" :PluginClean - 清除未使用插件,需要確認; 追加 `!` 自動批准移除未使用插件
"
" 查閱 :h vundle 獲取更多細節和wiki以及FAQ
" 將与插件無關的設放在這行之後

	安裝插件:

運行 vim 再運行 :PluginInstall

通過命令列直接安裝 vim +PluginInstall +qall

Docs

查閱 :h vundle [https://github.com/VundleVim/Vundle.vim/blob/master/doc/vundle.txt] Vimdoc 以獲取更多細節.

更新日誌

查閱 changelog [https://github.com/VundleVim/Vundle.vim/blob/master/changelog].

在使用此插件的用戶的VIMRC

查閱 Examples [https://github.com/VundleVim/Vundle.vim/wiki/Examples]

維護者

查閱 Vundle contributors [https://github.com/VundleVim/Vundle.vim/graphs/contributors]

感謝!

靈感 & 思路

	pathogen.vim [http://github.com/tpope/vim-pathogen/]

	Bundler [https://github.com/bundler/bundler]

	Scott Bronson [http://github.com/bronson]

另外

	Vundle 已測試環境為: Vim [http://www.vim.org] 7.3 on OS X, Linux and Windows

	Vundle 儘可能遵從 KISS [http://en.wikipedia.org/wiki/KISS_principle] 原則

TODO:

Vundle [http://github.com/VundleVim/Vundle.vim] 是一個正在進步對項目, 所以很多設計思路和補丁是需要借鑒的.

	✓ 在重新載入或者執行:PluginInstall之後激活.vimrc中新添加的插件

	✓ 使用預覽視窗顯示搜尋結果

	✓ Vim documentation

	✓ 同時將Vundle 放置在 bundles/ 中 (將修復 Vundle 幫助)

	✓ 測試

	✓ 提升錯誤處理能力

	支持手動指定版本(待考慮)

	版本依賴

	搜尋結果中顯示描述

	同時支援通過描述搜尋

	使其更加穩定!

Change Log

F = Feature, B = Bug Fix, D = Doc Change

Version 0.10.2

	B: #430 Put user script directories before system directories in rtp

	B: #455 Rename functions that start with g: + lowercase letter (Vim patch 7.4.264)

Version 0.10.1

	B: #451 Escape spaces when handling rtp directories

Version 0.10

	F: #415 Support plugin pinning (for non-git repos & preventing updates)

	F: #440 Detect plugin name collisions

	F: #418 Deferred rtp manipulation (speeds up start)

	B: #418 Leave default rtp directories (i.e. ~/.vim) where they should be

	B: #429 Fix newline character in log

	B: #440 Detect changed remotes & update repos

	D: #435 Image update in README.md

	D: #419 Add function documentation

	D: #436 Rename vundle to Vundle.vim, add modelines, quickstart update

Arch Linux Full-Disk Encryption Installation Guide

This guide provides instructions for an Arch Linux installation featuring full-disk encryption via LVM on LUKS and an encrypted boot partition (GRUB) for UEFI systems.

Following the main installation are further instructions to harden against Evil Maid attacks via UEFI Secure Boot custom key enrollment and self-signed kernel and bootloader.

Preface

You will find most of this information pulled from the Arch Wiki [https://wiki.archlinux.org/index.php/Dm-crypt/Encrypting_an_entire_system#Encrypted_boot_partition_(GRUB)] and other resources linked thereof.

Based on huntrar’s gist [https://gist.github.com/huntrar/e42aee630bee3295b2c671d098c81268#file-full-disk-encryption-arch-uefi-md] installation guide.

Note: The system was installed on an NVMe SSD, substitute /dev/nvme0nX with /dev/sdX or your device as needed.

Table of contents

[[TOC]]

Create USB stick

	Download ISO From https://archlinux.org/download/ [http://archlinux.mirrors.ovh.net/archlinux/iso/latest/]

wget -r -nd --no-parent -A 'archlinux-*-x86_64.iso' http://archlinux.mirrors.ovh.net/archlinux/iso/latest/
wget -r -nd --no-parent -A 'archlinux-*-x86_64.iso.sig' http://archlinux.mirrors.ovh.net/archlinux/iso/latest/

gpg --keyserver pgp.mit.edu --keyserver-options auto-key-retrieve --verify archlinux-*-x86_64.iso.sig

sudo dd bs=4M if=archlinux-*.iso of=/dev/sda status=progress oflag=sync

where /dev/sda is your usb key

From live

Number | Start (sector) | End (sector) | Size | Code | Name |
——-|—————-|————–|————|——|———————|
1 | 2048 | 4095 | 1024.0 KiB | EF02 | BIOS boot partition |
2 | 4096 | 1130495 | 550.0 MiB | EF00 | EFI System |
3 | 1130496 | 976773134 | 465.2 GiB | 8309 | Linux LUKS |

Partitions

Create

gdisk /dev/nvme0n1
o
n
[Enter]
0
+1M
ef02
n
[Enter]
[Enter]
+550M
ef00
n
[Enter]
[Enter]
[Enter]
8309
w

luks

cryptsetup luksFormat --type luks1 --use-random -S 1 -s 512 -h sha512 -i 5000 /dev/nvme0n1p3
cryptsetup luksOpen /dev/nvme0n1p3 cryptlvm

lvm

RAM_SIZE=$(($(getconf _PHYS_PAGES) * $(getconf PAGE_SIZE) / (1024 * 1024)))

pvcreate /dev/mapper/cryptlvm
vgcreate archlvm /dev/mapper/cryptlvm

lvcreate -L 32G archlvm -n slash
lvcreate -L 30G archlvm -n opt
lvcreate -L 10G archlvm -n var_lib_docker
lvcreate -L "${RAM_SIZE}M" archlvm -n swap
lvcreate -l 100%FREE archlvm -n home

Format

mkfs.fat -F32 /dev/nvme0n1p2 -n EFI
mkfs.ext4 /dev/mapper/archlvm-slash -L slash
mkfs.ext4 /dev/mapper/archlvm-home -L home
mkfs.ext4 /dev/mapper/archlvm-opt -L opt
mkfs.ext4 /dev/mapper/archlvm-var_lib_docker -L var_lib_docker
mkswap /dev/mapper/archlvm-swap -L swap
swapon /dev/mapper/archlvm-swap

Mount

mount /dev/mapper/archlvm-slash /mnt
mkdir /mnt/efi /mnt/home /mnt/var/lib/docker /mnt/opt -p
mount /dev/nvme0n1p2 /mnt/efi
mount /dev/mapper/archlvm-home /mnt/home
mount /dev/mapper/archlvm-var_lib_docker /mnt/var/lib/docker
mount /dev/mapper/archlvm-opt /mnt/opt
chmod 700 /boot

System

Install base

KERNEL='linux' # Vanilla Linux kernel and modules, with a few patches applied.
KERNEL='linux-lts' # Long-term support (LTS) Linux kernel and modules.
KERNEL='linux-zen' # Result of a collaborative effort of kernel hackers to provide the best Linux kernel possible for everyday systems.

UCODE='intel-ucode' # for Intel processors.
UCODE='amd-ucode' # for AMD processors

pacstrap /mnt \
 base \
 base-devel \
 ${KERNEL} \
 ${KERNEL}-headers \
 ${UCODE} \
 crda \
 efibootmgr \
 git \
 grub \
 linux-firmware \
 lvm2 \
 neofetch \
 network-manager-applet \
 networkmanager \
 openssh \
 os-prober \
 python \
 resolvconf \
 rsync \
 terminus-font \
 vim \
 wpa_supplicant \
 zsh

Configure resolv.conf

echo '[main]
rc-manager=resolvconf' > /etc/NetworkManager/conf.d/rc-manager.conf

Configure wifi region

echo 'WIRELESS_REGDOM="FR"' > /mnt/etc/conf.d/wireless-regdom

Create fstab

genfstab -U /mnt >> /mnt/etc/fstab
echo 'tmpfs /tmp tmpfs defaults,noatime,mode=1777 0 0' >> /mnt/etc/fstab
sed -i 's/relatime/noatime/g' /mnt/etc/fstab

From chroot

arch-chroot /mnt

At this point you should have the following partitions and logical volumes:
lsblk

NAME | MAJ:MIN | RM | SIZE | RO | TYPE | MOUNTPOINT |
——————————|———|—–|——–|—–|——-|—————–|
nvme0n1 | 259:0 | 0 | 953.9G | 0 | disk | |
├─nvme0n1p1 | 259:1 | 0 | 1M | 0 | part | |
├─nvme0n1p2 | 259:2 | 0 | 550M | 0 | part | /efi |
├─nvme0n1p3 | 259:3 | 0 | 953.3G | 0 | part | |
..└─cryptlvm | 254:0 | 0 | 953.3G | 0 | crypt | |
….├─archlvm-swap | 254:1 | 0 | 31.1G | 0 | lvm | [SWAP] |
….├─archlvm-root | 254:2 | 0 | 32G | 0 | lvm | / |
….└─archlvm-home | 254:3 | 0 | 100G | 0 | lvm | /home |
….└─archlvm-opt | 254:4 | 0 | 30G | 0 | lvm | /opt |
….└─archlvm-var_lib_docker | 254:5 | 0 | 10G | 0 | lvm | /var/lib/docker |

makeflags

use all core for builds

sed -i "/MAKEFLAGS=/cMAKEFLAGS=\"-j $((`nproc`+1))\"" /etc/makepkg.conf

Time zone

timedatectl set-timezone "$(curl -s --fail https://ipapi.co/timezone)"
timedatectl set-ntp true
timedatectl
hwclock --systohc

locales

sed -i 's/^#fr_FR/fr_FR/g' /etc/locale.gen
sed -i 's/^#en_US/en_US/g' /etc/locale.gen
locale-gen
echo 'LANG=en_US.UTF-8' > /etc/locale.conf

keymap

echo 'KEYMAP=us-acentos' > /etc/vconsole.conf
echo 'FONT=ter-116n' >> /etc/vconsole.conf

mkdir -p /etc/X11/xorg.conf.d
cat <<EOF>/etc/X11/xorg.conf.d/00-keyboard.conf
Read and parsed by systemd-localed. It's probably wise not to edit this file
manually too freely.
Section "InputClass"
 Identifier "system-keyboard"
 MatchIsKeyboard "on"
 Option "XkbLayout" "us"
 Option "XkbVariant" "intl"
EndSection
EOF

hostname

myhostname='MyArch'
echo "${myhostname}" > /etc/hostname
cat <<EOF>> /etc/hosts
127.0.0.1 localhost
127.0.1.1 ${myhostname} ${myhostname}.localdomain
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
EOF

boot

Grub

UUID=$(blkid /dev/nvme0n1p3 -s UUID -o value)

sed -i "/^GRUB_CMDLINE_LINUX=/cGRUB_CMDLINE_LINUX=\"cryptdevice=UUID=${UUID}:cryptlvm root=/dev/mapper/archlvm-slash cryptkey=rootfs:/root/.cryptlvm/archluks.bin\"" /etc/default/grub

sed -i "/GRUB_ENABLE_CRYPTODISK=/cGRUB_ENABLE_CRYPTODISK=y" /etc/default/grub

grub-install --target=x86_64-efi --efi-directory=/efi --bootloader-id=ArchLinux
grub-mkconfig -o /boot/grub/grub.cfg

initramfs

mkdir /root/.cryptlvm && chmod 700 /root/.cryptlvm
head -c 64 /dev/urandom > /root/.cryptlvm/archluks.bin && chmod 600 /root/.cryptlvm/archluks.bin
cryptsetup -v luksAddKey -i 1 /dev/nvme0n1p3 /root/.cryptlvm/archluks.bin

sed -i '/^MODULES/c\MODULES=(intel_agp i915)' /etc/mkinitcpio.conf
sed -i '/^FILES/c\FILES=(/root/.cryptlvm/archluks.bin)' /etc/mkinitcpio.conf
sed -i '/^HOOKS/c\HOOKS=(base udev autodetect modconf block keyboard keymap consolefont encrypt lvm2 filesystems fsck)' /etc/mkinitcpio.conf
mkinitcpio -P

services

systemctl enable NetworkManager
systemctl enable systemd-timesyncd.service

user

MYUSER='MyUser'
useradd -m -s /bin/zsh -G network,users,storage,lp,input,audio,wheel ${MYUSER}
echo '%wheel ALL=(ALL) NOPASSWD: ALL' >> /etc/sudoers.d/wheel
passwd ${MYUSER}

dotfiles

su - ${MYUSER}
git clone https://gitlab.com/pad92/dotfiles.git ~/.dotfiles
mkdir ~/.config
~/.dotfiles/install

cat <<EOF> ~/.config/nitrogen/bg-saved.cfg
[xin_-1]
file=/usr/share/backgrounds/archlinux/geolanes.png
mode=4
bgcolor=#000000
EOF

Packages manager

sudo vim /etc/pacman.conf
Color
ILoveCandy
[multilib]
SigLevel = PackageRequired
Include = /etc/pacman.d/mirrorlist

aur

sudo pacman -Sy

git clone https://aur.archlinux.org/yay.git
cd yay
makepkg -si
cd
rm -fr yay

WM and softs

yay -S --needed $(cat ~/.dotfiles/dist/archlinux/packages/*.txt)

exit

sync
exit
umount -R /mnt
reboot

Optional

SSD Trim

sudo pacman -S util-linux
sudo systemctl enable fstrim.timer

USBGuard

yay -S usbguard usbguard-applet-qt
sudo usbguard generate-policy | sudo tee /etc/usbguard/rules.conf
sudo systemctl start usbguard.service
sudo systemctl enable usbguard.service

Flatpak Apps

flatpak install com.microsoft.Teams \
 org.signal.Signal

Docker

yay -S docker docker-compose
usermod -a -G docker MyUser

Nvidia

sed -i '/^MODULES/c\MODULES=(nvidia)' /etc/mkinitcpio.conf
yay -S nvidia-dkms nvidia-utils
sudo mkinitcpio -P

Nvidia Prime

yay -S nvidia-dkms nvidia-utils nvidia-prime

Spotify

Remove notification

echo 'ui.track_notifications_enabled=false' > ~/.config/spotify/Users/*-user/prefs

 Note: this changelog only lists feature additions, not bugfixes. For details on
those, see the Git history.

	v1.19

	Add mode: option for create

	Add exclude: option for link

	v1.18

	Add --only and --except flags

	Add support to run with python -m dotbot

	Add --force-color option

	v1.17

	Add canonicalize-path: option for link

	v1.16

	Add create plugin

	v1.15

	Add quiet: option for shell

	v1.14

	Add if: option for link

	v1.13

	Add --no-color flag

	v1.12

	Add globbing support to link

	v1.11

	Add force option to clean to remove all broken symlinks

	v1.10

	Update link to support shorthand syntax for links

	v1.9

	Add support for default options for commands

	v1.8

	Update link to be able to create relative links

	v1.7

	Add support for plugins

	v1.6

	Update link to expand environment variables in paths

	v1.5

	Update link to be able to automatically overwrite broken symlinks

	v1.4

	Update shell to allow for selectively enabling/disabling stdin, stdout,
and stderr

	v1.3

	Add support for YAML format configs

	v1.2

	Update link to be able to force create links (deleting things that were
previously there)

	Update link to be able to create parent directories

	v1.1

	Update clean to remove old broken symlinks

	v1.0

	Initial commit

Contributing

All kinds of contributions to Dotbot are greatly appreciated. For someone
unfamiliar with the code base, the most efficient way to contribute is usually
to submit a feature request or bug report.
If you want to dive into the source code, you can submit a patch as
well, either working on your own ideas or existing issues [https://github.com/anishathalye/dotbot/issues].

Feature Requests

Do you have an idea for an awesome new feature for Dotbot? Please submit a
feature request [https://github.com/anishathalye/dotbot/issues/new]. It’s great to hear about new ideas.

If you are inclined to do so, you’re welcome to fork [https://github.com/anishathalye/dotbot/fork] Dotbot, work on
implementing the feature yourself, and submit a patch. In this case, it’s
highly recommended that you first open an issue [https://github.com/anishathalye/dotbot/issues/new] describing your
enhancement to get early feedback on the new feature that you are implementing.
This will help avoid wasted efforts and ensure that your work is incorporated
into the code base.

Bug Reports

Did something go wrong with Dotbot? Sorry about that! Bug reports are greatly
appreciated!

When you submit a bug report [https://github.com/anishathalye/dotbot/issues/new], please include relevant information such
as Dotbot version, operating system, configuration file, error messages, and
steps to reproduce the bug. The more details you can include, the easier it is
to find and fix the bug.

Patches

Want to hack on Dotbot? Awesome!

If there are open issues [https://github.com/anishathalye/dotbot/issues], you’re more than welcome to work on those -
this is probably the best way to contribute to Dotbot. If you have your own
ideas, that’s great too! In that case, before working on substantial changes to
the code base, it is highly recommended that you first open an issue [https://github.com/anishathalye/dotbot/issues/new]
describing what you intend to work on.

Patches are generally submitted as pull requests. Patches are also
accepted over email.

Any changes to the code base should follow the style and coding conventions
used in the rest of the project. The version history should be clean, and
commit messages should be descriptive and properly
formatted [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

When preparing a patch, it’s recommended that you add unit tests
that demonstrate the bug is fixed (or that the feature works).
You can run the tests on your local machine by installing the dev extras.
The steps below do this using a virtual environment:

Create a local virtual environment
$ python -m venv .venv

Activate the virtual environment
Cygwin, Linux, and MacOS:
$. .venv/bin/activate
Windows Powershell:
$ & .venv\Scripts\Activate.ps1

Update pip and setuptools
(.venv) $ python -m pip install -U pip setuptools

Install dotbot and its development dependencies
(.venv) $ python -m pip install -e .[dev]

Run the unit tests
(.venv) $ tox

If you prefer to run the tests in an isolated container using Docker, you can
do so with the following:

docker run -it --rm -v "${PWD}:/dotbot" -w /dotbot python:3.10-alpine /bin/sh

After spawning the container, follow the same instructions as above (create a
virtualenv, …, run the tests).

If you have any questions about anything, feel free to ask!

The MIT License (MIT)

Copyright (c) Anish Athalye (me@anishathalye.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Dotbot [image: https://github.com/anishathalye/dotbot/workflows/CI/badge.svg]Build Status [https://github.com/anishathalye/dotbot/actions?query=workflow%3ACI]

Dotbot makes installing your dotfiles as easy as git clone $url && cd dotfiles && ./install, even on a freshly installed system!

	Rationale

	Getting Started

	Configuration

	Directives (Link, Create, Shell, Clean, Defaults)

	Plugins

	Command-line Arguments

	Wiki [https://github.com/anishathalye/dotbot/wiki]

Rationale

Dotbot is a tool that bootstraps your dotfiles (it’s a [Dot]files
[bo]o[t]strapper, get it?). It does less than you think, because version
control systems do more than you think.

Dotbot is designed to be lightweight and self-contained, with no external
dependencies and no installation required. Dotbot can also be a drop-in
replacement for any other tool you were using to manage your dotfiles, and
Dotbot is VCS-agnostic – it doesn’t make any attempt to manage your dotfiles.

See this blog
post [https://www.anishathalye.com/2014/08/03/managing-your-dotfiles/] or more
resources on the tutorials
page [https://github.com/anishathalye/dotbot/wiki/Tutorials] for more detailed
explanations of how to organize your dotfiles.

Getting Started

Starting Fresh?

Great! You can automate the creation of your dotfiles by using the
user-contributed init-dotfiles [https://github.com/Vaelatern/init-dotfiles] script. If you’d rather use a
template repository, check out dotfiles_template [https://github.com/anishathalye/dotfiles_template]. Or, if
you’re just looking for some inspiration [https://github.com/anishathalye/dotbot/wiki/Users], we’ve got you covered.

Integrate with Existing Dotfiles

The following will help you get set up using Dotbot in just a few steps.

If you’re using Git, you can add Dotbot as a submodule:

cd ~/.dotfiles # replace with the path to your dotfiles
git init # initialize repository if needed
git submodule add https://github.com/anishathalye/dotbot
git config -f .gitmodules submodule.dotbot.ignore dirty # ignore dirty commits in the submodule
cp dotbot/tools/git-submodule/install .
touch install.conf.yaml

If you’re using Mercurial, you can add Dotbot as a subrepo:

cd ~/.dotfiles # replace with the path to your dotfiles
hg init # initialize repository if needed
echo "dotbot = [git]https://github.com/anishathalye/dotbot" > .hgsub
hg add .hgsub
git clone https://github.com/anishathalye/dotbot
cp dotbot/tools/hg-subrepo/install .
touch install.conf.yaml

If you are using PowerShell instead of a POSIX shell, you can use the provided
install.ps1 script instead of install. On Windows, Dotbot only supports
Python 3.8+, and it requires that your account is allowed to create symbolic
links [https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/create-symbolic-links].

To get started, you just need to fill in the install.conf.yaml and Dotbot
will take care of the rest. To help you get started we have an
example config file as well as configuration
documentation for the accepted parameters.

Note: The install script is merely a shim that checks out the appropriate
version of Dotbot and calls the full Dotbot installer. By default, the script
assumes that the configuration is located in install.conf.yaml the Dotbot
submodule is located in dotbot. You can change either of these parameters by
editing the variables in the install script appropriately.

Setting up Dotbot as a submodule or subrepo locks it on the current version.
You can upgrade Dotbot at any point. If using a submodule, run git submodule update --remote dotbot, substituting dotbot with the path to the Dotbot
submodule; be sure to commit your changes before running ./install, otherwise
the old version of Dotbot will be checked out by the install script. If using a
subrepo, run git fetch && git checkout origin/master in the Dotbot directory.

If you prefer, you can install Dotbot from PyPI [https://pypi.org/project/dotbot/] and call it as a command-line
program:

pip install dotbot
touch install.conf.yaml

In this case, rather than running ./install, you can invoke Dotbot with
dotbot -c <path to configuration file>.

Full Example

Here’s an example of a complete configuration.

The conventional name for the configuration file is install.conf.yaml.

- defaults:
 link:
 relink: true

- clean: ['~']

- link:
 ~/.tmux.conf: tmux.conf
 ~/.vim: vim
 ~/.vimrc: vimrc

- create:
 - ~/downloads
 - ~/.vim/undo-history

- shell:
 - [git submodule update --init --recursive, Installing submodules]

The configuration file is typically written in YAML, but it can also be written
in JSON (which is a subset of YAML [https://www.json2yaml.com/]). JSON configuration files are
conventionally named install.conf.json.

Configuration

Dotbot uses YAML or JSON-formatted configuration files to let you specify how
to set up your dotfiles. Currently, Dotbot knows how to link files and
folders, create folders, execute shell commands, and
clean directories of broken symbolic links. Dotbot also supports user
plugins for custom commands.

Ideally, bootstrap configurations should be idempotent. That is, the
installer should be able to be run multiple times without causing any
problems. This makes a lot of things easier to do (in particular, syncing
updates between machines becomes really easy).

Dotbot configuration files are arrays of tasks, where each task
is a dictionary that contains a command name mapping to data for that command.
Tasks are run in the order in which they are specified. Commands within a task
do not have a defined ordering.

When writing nested constructs, keep in mind that YAML is whitespace-sensitive.
Following the formatting used in the examples is a good idea. If a YAML
configuration file is not behaving as you expect, try inspecting the
equivalent JSON [https://www.json2yaml.com/] and check that it is correct.

Directives

Most Dotbot commands support both a simplified and extended syntax, and they
can also be configured via setting defaults.

Link

Link commands specify how files and directories should be symbolically linked.
If desired, items can be specified to be forcibly linked, overwriting existing
files if necessary. Environment variables in paths are automatically expanded.

Format

Link commands are specified as a dictionary mapping targets to source
locations. Source locations are specified relative to the base directory (that
is specified when running the installer). If linking directories, do not
include a trailing slash.

Link commands support an optional extended configuration. In this type of
configuration, instead of specifying source locations directly, targets are
mapped to extended configuration dictionaries.

Parameter	Explanation
—	—
path	The source for the symlink, the same as in the shortcut syntax (default: null, automatic (see below))
create	When true, create parent directories to the link as needed. (default: false)
relink	Removes the old target if it’s a symlink (default: false)
force	Force removes the old target, file or folder, and forces a new link (default: false)
relative	Use a relative path to the source when creating the symlink (default: false, absolute links)
canonicalize	Resolve any symbolic links encountered in the source to symlink to the canonical path (default: true, real paths)
if	Execute this in your $SHELL and only link if it is successful.
ignore-missing	Do not fail if the source is missing and create the link anyway (default: false)
glob	Treat path as a glob pattern, expanding patterns referenced below, linking all files matched. (default: false)
exclude	Array of glob patterns to remove from glob matches. Uses same syntax as path. Ignored if glob is false. (default: empty, keep all matches)
prefix	Prepend prefix prefix to basename of each file when linked, when glob is true. (default: ‘’)

When glob: True, Dotbot uses glob.glob [https://docs.python.org/3/library/glob.html#glob.glob] to resolve glob paths, expanding Unix shell-style wildcards, which are not the same as regular expressions; Only the following are expanded:

Pattern	Meaning
:———	:——————————————————-
*	matches anything
**	matches any file, recursively (Python >= 3.5 only)
?	matches any single character
[seq]	matches any character in seq
[!seq]	matches any character not in seq

However, due to the design of glob.glob, using a glob pattern such as config/*, will not match items that begin with .. To specifically capture items that being with ., you will need to include the . in the pattern, like this: config/.*.

Example

- link:
 ~/.config/terminator:
 create: true
 path: config/terminator
 ~/.vim: vim
 ~/.vimrc:
 relink: true
 path: vimrc
 ~/.zshrc:
 force: true
 path: zshrc
 ~/.hammerspoon:
 if: '[`uname` = Darwin]'
 path: hammerspoon
 ~/.config/:
 path: dotconf/config/**
 ~/:
 glob: true
 path: dotconf/*
 prefix: '.'

If the source location is omitted or set to null, Dotbot will use the
basename of the destination, with a leading . stripped if present. This makes
the following two config files equivalent.

Explicit sources:

- link:
 ~/bin/ack: ack
 ~/.vim: vim
 ~/.vimrc:
 relink: true
 path: vimrc
 ~/.zshrc:
 force: true
 path: zshrc
 ~/.config/:
 glob: true
 path: config/*
 relink: true
 exclude: [config/Code]
 ~/.config/Code/User/:
 create: true
 glob: true
 path: config/Code/User/*
 relink: true

Implicit sources:

- link:
 ~/bin/ack:
 ~/.vim:
 ~/.vimrc:
 relink: true
 ~/.zshrc:
 force: true
 ~/.config/:
 glob: true
 path: config/*
 relink: true
 exclude: [config/Code]
 ~/.config/Code/User/:
 create: true
 glob: true
 path: config/Code/User/*
 relink: true

Create

Create commands specify empty directories to be created. This can be useful
for scaffolding out folders or parent folder structure required for various
apps, plugins, shell commands, etc.

Format

Create commands are specified as an array of directories to be created. If you
want to use the optional extended configuration, create commands are specified
as dictionaries. For convenience, it’s permissible to leave the options blank
(null) in the dictionary syntax.

Parameter	Explanation
—	—
mode	The file mode to use for creating the leaf directory (default: 0777)

The mode parameter is treated in the same way as in Python’s
os.mkdir [https://docs.python.org/3/library/os.html#mkdir-modebits]. Its
behavior is platform-dependent. On Unix systems, the current umask value is
first masked out.

Example

- create:
 - ~/downloads
 - ~/.vim/undo-history
- create:
 ~/.ssh:
 mode: 0700
 ~/projects:

Shell

Shell commands specify shell commands to be run. Shell commands are run in the
base directory (that is specified when running the installer).

Format

Shell commands can be specified in several different ways. The simplest way is
just to specify a command as a string containing the command to be run.

Another way is to specify a two element array where the first element is the
shell command and the second is an optional human-readable description.

Shell commands support an extended syntax as well, which provides more
fine-grained control.

Parameter	Explanation
—	—
command	The command to be run
description	A human-readable message describing the command (default: null)
quiet	Show only the description but not the command in log output (default: false)
stdin	Allow a command to read from standard input (default: false)
stdout	Show a command’s output from stdout (default: false)
stderr	Show a command’s error output from stderr (default: false)

Note that quiet controls whether the command (a string) is printed in log
output, it does not control whether the output from running the command is
printed (that is controlled by stdout / stderr). When a command’s stdin /
stdout / stderr is not enabled (which is the default), it’s connected to
/dev/null, disabling input and hiding output.

Example

- shell:
 - chsh -s $(which zsh)
 - [chsh -s $(which zsh), Making zsh the default shell]
 -
 command: read var && echo Your variable is $var
 stdin: true
 stdout: true
 description: Reading and printing variable
 quiet: true
 -
 command: read fail
 stderr: true

Clean

Clean commands specify directories that should be checked for dead symbolic
links. These dead links are removed automatically. Only dead links that point
to somewhere within the dotfiles directory are removed unless the force
option is set to true.

Format

Clean commands are specified as an array of directories to be cleaned.

Clean commands also support an extended configuration syntax.

Parameter	Explanation
—	—
force	Remove dead links even if they don’t point to a file inside the dotfiles directory (default: false)
recursive	Traverse the directory recursively looking for dead links (default: false)

Note: using the recursive option for ~ is not recommended because it will
be slow.

Example

- clean: ['~']

- clean:
 ~/:
 force: true
 ~/.config:
 recursive: true

Defaults

Default options for plugins can be specified so that options don’t have to be
repeated many times. This can be very useful to use with the link command, for
example.

Defaults apply to all commands that come after setting the defaults. Defaults
can be set multiple times; each change replaces the defaults with a new set of
options.

Format

Defaults are specified as a dictionary mapping action names to settings, which
are dictionaries from option names to values.

Example

- defaults:
 link:
 create: true
 relink: true

Plugins

Dotbot also supports custom directives implemented by plugins. Plugins are
implemented as subclasses of dotbot.Plugin, so they must implement
can_handle() and handle(). The can_handle() method should return True
if the plugin can handle an action with the given name. The handle() method
should do something and return whether or not it completed successfully.

All built-in Dotbot directives are written as plugins that are loaded by
default, so those can be used as a reference when writing custom plugins.

Plugins are loaded using the --plugin and --plugin-dir options, using
either absolute paths or paths relative to the base directory. It is
recommended that these options are added directly to the install script.

See here [https://github.com/anishathalye/dotbot/wiki/Plugins] for a current list of plugins.

Command-line Arguments

Dotbot takes a number of command-line arguments; you can run Dotbot with
--help, e.g. by running ./install --help, to see the full list of options.
Here, we highlight a couple that are particularly interesting.

--only

You can call ./install --only [list of directives], such as ./install --only link, and Dotbot will only run those sections of the config file.

--except

You can call ./install --except [list of directives], such as ./install --except shell, and Dotbot will run all the sections of the config file except
the ones listed.

Wiki

Check out the Dotbot wiki [https://github.com/anishathalye/dotbot/wiki] for more information, tips and tricks,
user-contributed plugins, and more.

Contributing

Do you have a feature request, bug report, or patch? Great! See
CONTRIBUTING.md for information on what you can do about that.

License

Copyright (c) Anish Athalye. Released under the MIT License. See
LICENSE.md for details.

 https://www.elegantwallpapers.com/images/nebuleuse-de-papillon/

ansible plugin

Introduction

The ansible plugin adds several aliases for useful ansible [https://docs.ansible.com/ansible/latest/index.html] commands and aliases.

To use it, add ansible to the plugins array of your zshrc file:

plugins=(... ansible)

Aliases

Command	Description
:——————————————-	:——————————————————————–
ansible-version / aver	Show the version on ansible installed in this host
ansible-role-init <role name> / arinit	Creates the Ansible Role as per Ansible Galaxy standard
a	command ansible
aconf	command ansible-config
acon	command ansible-console
aconn	command ansible-connection
ainv	command ansible-inventory
aplay	command ansible-playbook
ainv	command ansible-inventory
adoc	command ansible-doc
agal	command ansible-galaxy
apull	command ansible-pull
aval	command ansible-vault

Maintainer

Deepankumar [https://github.com/deepan10]

https://github.com/deepan10/oh-my-zsh/tree/features/ansible-plugin

Archlinux plugin

Features

YAY

Alias	Command	Description
———	————————————	———————————————————————
yaconf	yay -Pg	Print current configuration
yain	yay -S	Install packages from the repositories
yains	yay -U	Install a package from a local file
yainsd	yay -S –asdeps	Install packages as dependencies of another package
yaloc	yay -Qi	Display information about a package in the local database
yalocs	yay -Qs	Search for packages in the local database
yalst	yay -Qe	List installed packages including from AUR (tagged as “local”)
yamir	yay -Syy	Force refresh of all package lists after updating mirrorlist
yaorph	yay -Qtd	Remove orphans using yaourt
yare	yay -R	Remove packages, keeping its settings and dependencies
yarem	yay -Rns	Remove packages, including its settings and unneeded dependencies
yarep	yay -Si	Display information about a package in the repositories
yareps	yay -Ss	Search for packages in the repositories
yaupg	yay -Syu	Sync with repositories before upgrading packages
yasu	yay -Syu –no-confirm	Same as yaupg, but without confirmation

TRIZEN

Alias	Command	Description
———	————————————	———————————————————————
trconf	trizen -C	Fix all configuration files with vimdiff
trin	trizen -S	Install packages from the repositories
trins	trizen -U	Install a package from a local file
trinsd	trizen -S –asdeps	Install packages as dependencies of another package
trloc	trizen -Qi	Display information about a package in the local database
trlocs	trizen -Qs	Search for packages in the local database
trlst	trizen -Qe	List installed packages including from AUR (tagged as “local”)
trmir	trizen -Syy	Force refresh of all package lists after updating mirrorlist
trorph	trizen -Qtd	Remove orphans using yaourt
trre	trizen -R	Remove packages, keeping its settings and dependencies
trrem	trizen -Rns	Remove packages, including its settings and unneeded dependencies
trrep	trizen -Si	Display information about a package in the repositories
trreps	trizen -Ss	Search for packages in the repositories
trupd	trizen -Sy && sudo abs && sudo aur	Update and refresh local package, ABS and AUR databases
trupd	trizen -Sy && sudo abs	Update and refresh the local package and ABS databases
trupd	trizen -Sy && sudo aur	Update and refresh the local package and AUR databases
trupd	trizen -Sy	Update and refresh the local package database
trupg	trizen -Syua	Sync with repositories before upgrading all packages (from AUR too)
trsu	trizen -Syua –no-confirm	Same as trupg, but without confirmation
upgrade	trizen -Syu	Sync with repositories before upgrading packages

YAOURT

Alias	Command	Description
———	————————————	———————————————————————
yaconf	yaourt -C	Fix all configuration files with vimdiff
yain	yaourt -S	Install packages from the repositories
yains	yaourt -U	Install a package from a local file
yainsd	yaourt -S –asdeps	Install packages as dependencies of another package
yaloc	yaourt -Qi	Display information about a package in the local database
yalocs	yaourt -Qs	Search for packages in the local database
yalst	yaourt -Qe	List installed packages including from AUR (tagged as “local”)
yamir	yaourt -Syy	Force refresh of all package lists after updating mirrorlist
yaorph	yaourt -Qtd	Remove orphans using yaourt
yare	yaourt -R	Remove packages, keeping its settings and dependencies
yarem	yaourt -Rns	Remove packages, including its settings and unneeded dependencies
yarep	yaourt -Si	Display information about a package in the repositories
yareps	yaourt -Ss	Search for packages in the repositories
yaupd	yaourt -Sy && sudo abs && sudo aur	Update and refresh local package, ABS and AUR databases
yaupd	yaourt -Sy && sudo abs	Update and refresh the local package and ABS databases
yaupd	yaourt -Sy && sudo aur	Update and refresh the local package and AUR databases
yaupd	yaourt -Sy	Update and refresh the local package database
yaupg	yaourt -Syua	Sync with repositories before upgrading all packages (from AUR too)
yasu	yaourt -Syua –no-confirm	Same as yaupg, but without confirmation
upgrade	yaourt -Syu	Sync with repositories before upgrading packages

PACAUR

Alias	Command	Description
———	————————————	———————————————————————
pain	pacaur -S	Install packages from the repositories
pains	pacaur -U	Install a package from a local file
painsd	pacaur -S –asdeps	Install packages as dependencies of another package
paloc	pacaur -Qi	Display information about a package in the local database
palocs	pacaur -Qs	Search for packages in the local database
palst	pacaur -Qe	List installed packages including from AUR (tagged as “local”)
pamir	pacaur -Syy	Force refresh of all package lists after updating mirrorlist
paorph	pacaur -Qtd	Remove orphans using pacaur
pare	pacaur -R	Remove packages, keeping its settings and dependencies
parem	pacaur -Rns	Remove packages, including its settings and unneeded dependencies
parep	pacaur -Si	Display information about a package in the repositories
pareps	pacaur -Ss	Search for packages in the repositories
paupd	pacaur -Sy && sudo abs && sudo aur	Update and refresh local package, ABS and AUR databases
paupd	pacaur -Sy && sudo abs	Update and refresh the local package and ABS databases
paupd	pacaur -Sy && sudo aur	Update and refresh the local package and AUR databases
paupd	pacaur -Sy	Update and refresh the local package database
paupg	pacaur -Syua	Sync with repositories before upgrading all packages (from AUR too)
pasu	pacaur -Syua –no-confirm	Same as paupg, but without confirmation
upgrade	pacaur -Syu	Sync with repositories before upgrading packages

PACMAN

Alias	Command	Description
————–	—————————————–	————————————————————–
pacin	sudo pacman -S	Install packages from the repositories
pacins	sudo pacman -U	Install a package from a local file
pacinsd	sudo pacman -S –asdeps	Install packages as dependencies of another package
pacloc	pacman -Qi	Display information about a package in the local database
paclocs	pacman -Qs	Search for packages in the local database
paclsorphans	sudo pacman -Qdt	List all orphaned packages
pacmir	sudo pacman -Syy	Force refresh of all package lists after updating mirrorlist
pacre	sudo pacman -R	Remove packages, keeping its settings and dependencies
pacrem	sudo pacman -Rns	Remove packages, including its settings and dependencies
pacrep	pacman -Si	Display information about a package in the repositories
pacreps	pacman -Ss	Search for packages in the repositories
pacrmorphans	sudo pacman -Rs $(pacman -Qtdq)	Delete all orphaned packages
pacupd	sudo pacman -Sy && sudo abs && sudo aur	Update and refresh the local package, ABS and AUR databases
pacupd	sudo pacman -Sy && sudo abs	Update and refresh the local package and ABS databases
pacupd	sudo pacman -Sy && sudo aur	Update and refresh the local package and AUR databases
pacupd	sudo pacman -Sy	Update and refresh the local package database
pacupg	sudo pacman -Syu	Sync with repositories before upgrading packages
upgrade	sudo pacman -Syu	Sync with repositories before upgrading packages
pacfileupg	sudo pacman -Fy	Download fresh package databases from the server
pacfiles	pacman -Fs	Search package file names for matching strings
pacls	pacman -Ql	List files in a package
pacown	pacman -Qo	Show which package owns a file

Function	Description
—————-	——————————————————
pacdisowned	List all disowned files in your system
paclist	List all installed packages with a short description
pacmanallkeys	Get all keys for developers and trusted users
pacmansignkeys	Locally trust all keys passed as parameters
pacweb	Open the website of an ArchLinux package

Contributors

	Benjamin Boudreau - dreurmail@gmail.com

	Celso Miranda - contacto@celsomiranda.net

	KhasMek - Boushh@gmail.com

	Martin Putniorz - mputniorz@gmail.com

	MatthR3D - matthr3d@gmail.com

	ornicar - thibault.duplessis@gmail.com

	Juraj Fiala - doctorjellyface@riseup.net

	Majora320 (Moses Miller) - Majora320@gmail.com

	Ybalrid (Arthur Brainville) - ybalrid@ybalrid.info

command-not-found plugin

This plugin uses the command-not-found package for zsh to provide suggested packages to be installed if a command cannot be found.

To use it, add command-not-found to the plugins array of your zshrc file:

plugins=(... command-not-found)

An example of how this plugin works in Ubuntu:

$ mutt
The program 'mutt' can be found in the following packages:
 * mutt
 * mutt-kz
 * mutt-patched
Try: sudo apt install <selected package>

Supported platforms

It works out of the box with the command-not-found packages for:

	Ubuntu [https://www.porcheron.info/command-not-found-for-zsh/]

	Debian [https://packages.debian.org/search?keywords=command-not-found]

	Arch Linux [https://wiki.archlinux.org/index.php/Pkgfile#Command_not_found]

	macOS (Homebrew) [https://github.com/Homebrew/homebrew-command-not-found]

	Fedora [https://fedoraproject.org/wiki/Features/PackageKitCommandNotFound]

You can add support for other platforms by submitting a Pull Request.

Docker autocomplete plugin

A copy of the completion script from the
docker/cli [https://github.com/docker/cli/blob/master/contrib/completion/zsh/_docker]
git repo.

Docker-compose

This plugin provides completion for docker-compose [https://docs.docker.com/compose/] as well as some
aliases for frequent docker-compose commands.

To use it, add docker-compose to the plugins array of your zshrc file:

plugins=(... docker-compose)

Aliases

Alias	Command	Description
———–	————————–	——————————————————————
dco	docker-compose	Docker-compose main command
dcb	docker-compose build	Build containers
dce	docker-compose exec	Execute command inside a container
dcps	docker-compose ps	List containers
dcrestart	docker-compose restart	Restart container
dcrm	docker-compose rm	Remove container
dcr	docker-compose run	Run a command in container
dcstop	docker-compose stop	Stop a container
dcup	docker-compose up	Build, (re)create, start, and attach to containers for a service
dcupd	docker-compose up -d	Same as dcup, but starts as daemon
dcdn	docker-compose down	Stop and remove containers
dcl	docker-compose logs	Show logs of container
dclf	docker-compose logs -f	Show logs and follow output
dcpull	docker-compose pull	Pull image of a service
dcstart	docker-compose start	Start a container

extract plugin

This plugin defines a function called extract that extracts the archive file
you pass it, and it supports a wide variety of archive filetypes.

This way you don’t have to know what specific command extracts a file, you just
do extract <filename> and the function takes care of the rest.

To use it, add extract to the plugins array in your zshrc file:

plugins=(... extract)

Supported file extensions

Extension	Description
:——————	:————————————-
7z	7zip file
Z	Z archive (LZW)
apk	Android app file
bz2	Bzip2 file
deb	Debian package
gz	Gzip file
ipsw	iOS firmware file
jar	Java Archive
lzma	LZMA archive
rar	WinRAR archive
sublime-package	Sublime Text package
tar	Tarball
tar.bz2	Tarball with bzip2 compression
tar.gz	Tarball with gzip compression
tar.xz	Tarball with lzma2 compression
tar.zma	Tarball with lzma compression
tbz	Tarball with bzip compression
tbz2	Tarball with bzip2 compression
tgz	Tarball with gzip compression
tlz	Tarball with lzma compression
txz	Tarball with lzma2 compression
war	Web Application archive (Java-based)
xpi	Mozilla XPI module file
xz	LZMA2 archive
zip	Zip archive

See list of archive formats [https://en.wikipedia.org/wiki/List_of_archive_formats] for
more information regarding archive formats.

github

This plugin supports working with GitHub from the command line. It provides a few things:

	Sets up the hub wrapper and completions for the git command if you have hub installed.

	Completion for the github Ruby gem.

	Convenience functions for working with repos and URLs.

Functions

	empty_gh - Creates a new empty repo (with a README.md) and pushes it to GitHub

	new_gh - Initializes an existing directory as a repo and pushes it to GitHub

	exist_gh - Takes an existing repo and pushes it to GitHub

	git.io - Shortens a URL using git.io [https://git.io]

Installation

Hub [https://github.com/github/hub] needs to be installed if you want to use it. On OS X with Homebrew, this can be done with brew install hub. The hub completion definition needs to be added to your $FPATH before initializing OMZ.

The github Ruby gem [https://github.com/defunkt/github-gem] needs to be installed if you want to use it.

Configuration

These settings affect github’s behavior.

Environment variables

	$GITHUB_USER

	$GITHUB_PASSWORD

Git configuration options

	github.user - GitHub username for repo operations

See man hub for more details.

Homebrew installation note

If you have installed hub using Homebrew, its completions may not be on your $FPATH if you are using the system zsh. Homebrew installs zsh completion definitions to /usr/local/share/zsh/site-functions, which will be on $FPATH for the Homebrew-installed zsh, but not for the system zsh. If you want it to work with the system zsh, add this to your ~/.zshrc before it sources oh-my-zsh.sh.

if ((! ${fpath[(I)/usr/local/share/zsh/site-functions]})); then
 FPATH=/usr/local/share/zsh/site-functions:$FPATH
fi

HTTPie

Maintainer: lululau [https://github.com/lululau]

This plugin adds completion for HTTPie, which is a command line HTTP client, a user-friendly cURL replacement.

HTTPie Homepage [https://httpie.org]

 The MIT License (MIT)

Copyright (c) 2016 Federico Marzocchi

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

zsh-notify

Desktop notifications for long-running commands in ZSH.

Supported terminals

	On macOS: Terminal.app or iTerm2 [http://www.iterm2.com/];

	On Linux (and possibly other systems): any terminal application should be
supported as xdotool and wmctrl are used to query and modify windows
state.

Setup and usage

Prerequisites

macOS

Install terminal-notifier.app [https://github.com/alloy/terminal-notifier] (default*)

When using tmux on Yosemite:

reattach-to-user-namespace is required to prevent terminal-notifier from hanging
(see julienXX/terminal-notifier#115 [https://github.com/julienXX/terminal-notifier/issues/115] for details).

Linux/Other

Install notify-send (default*) – available in libnotify [https://github.com/GNOME/libnotify], xdotool and wmctrl

* usage of custom notifiers is described in Configuration

Installation

Just clone this repository and source notify.plugin.zsh in your ~/.zshrc,
or see below for instructions on installing with some popular package managers.

Configuration

The behavior of zsh-notify can be modified by using zstyle after
sourcing notify.plugin.zsh.

	Set a custom title for error and success notifications, when using the
built-in notifier.

 zstyle ':notify:*' error-title "Command failed"
 zstyle ':notify:*' success-title "Command finished"

The string #{time_elapsed} will be replaced with the command run time.

 zstyle ':notify:*' error-title "Command failed (in #{time_elapsed} seconds)"
 zstyle ':notify:*' success-title "Command finished (in #{time_elapsed} seconds)"

	Change the notifications icons for failure or success. Provide the path to an
image, or an URL if you are on macOS.

 zstyle ':notify:*' error-icon "/path/to/error-icon.png"
 zstyle ':notify:*' success-icon "/path/to/success-icon.png"

Try this [https://gist.github.com/marzocchi/14c47a49643389029a2026b4d4fec7ae]. Wow.

	Play sounds with error and success notifications when using the built-in
notifier. Provide the path to an audio file, or the name of an “alert” sound
if you are on macOS.

 zstyle ':notify:*' error-sound "Glass"
 zstyle ':notify:*' success-sound "default"

	Have the terminal come back to front when the notification is posted.

 zstyle ':notify:*' activate-terminal yes

	Disable setting the urgency hint for the terminal when the notification is
posted (Linux only).

 zstyle ':notify:*' disable-urgent yes

	Set a different timeout for notifications for successful commands
(notifications for failed commands are always posted).

 zstyle ':notify:*' command-complete-timeout 15

The default value is 30 seconds.

	Set application name in notification if set.
If this value is not set it will strip the name from message.
(only notify-send).

 zstyle ':notify:*' app-name sh

The default value is ‘’.

	Set a expire time in notifications
(only notify-send).

 zstyle ':notify:*' expire-time 2500

The default value is undefined milliseconds (disabled).

	Replace the built-in notifier with a custom one at ~/bin/my-notifier. The
custom notifier will receive the notification type (error or success) as
the first argument, the time elapsed as the second argument, and the
command line as standard input.

 zstyle ':notify:*' notifier ~/bin/my-notifier

	Use the time elapsed even when the command fails (by default, notifications
for command failures are not conditional on the elapsed time).

 zstyle ':notify:*' always-notify-on-failure no

	Set a blacklist of commands that should never trigger notifications, using a
regex support by grep’s extended regular expression syntax:

 zstyle ':notify:*' blacklist-regex 'find|git'

	Enable when connected over SSH, which is disabled by default.

 zstyle ':notify:*' enable-on-ssh yes

	Disable error reporting (or send it somewhere else)

 zstyle ':notify:*' error-log /dev/null

	Force checking of the WINDOWID variable on every command:

 zstyle ':notify:*' always-check-active-window yes

	Ignore checking if the terminal is focused at all:

 zstyle ':notify:*' check-focus no

Installation with package managers

Antigen [https://github.com/zsh-users/antigen]

Add antigen bundle marzocchi/zsh-notify to your .zshrc with your other
bundle commands.

Antigen will handle cloning the plugin for you automatically the next time you
start zsh. You can also add the plugin to a running zsh with antigen bundle marzocchi/zsh-notify for testing before adding it to your .zshrc.

Fig [https://fig.io]

Fig adds apps, shortcuts, and autocomplete to your existing terminal.

Install zsh-notify in just one click.

Oh-My-Zsh [http://ohmyz.sh/]

	git clone git@github.com:marzocchi/zsh-notify.git ${ZSH_CUSTOM:-~/.oh-my-zsh/custom}/plugins/notify

	Add zsh-notify to your plugin list - edit ~/.zshrc and change plugins=(...) to plugins=(... notify)

Note: when cloning, specify the target directory as notify since
Oh-My-Zsh expects the plugin’s initialization file to have the same name as
it’s directory.

Zgen [https://github.com/tarjoilija/zgen]

Add zgen load marzocchi/zsh-notify to your .zshrc file in the same function
you’re doing your other zgen load calls in.

rsync

This plugin adds aliases for frequent rsync [https://rsync.samba.org/] commands.

To use it add rsync to the plugins array in you zshrc file.

plugins=(... rsync)

Alias	Command
——————-	————————————————
rsync-copy	rsync -avz --progress -h
rsync-move	rsync -avz --progress -h --remove-source-files
rsync-update	rsync -avzu --progress -h
rsync-synchronize	rsync -avzu --delete --progress -h

Changelog

v0.7.0

	Enable asynchronous mode by default (#498)

	No longer wrap user widgets starting with autosuggest- prefix (#496)

	Fix a bug wrapping widgets that modify the buffer (#541)

v0.6.4

	Fix vi-forward-char triggering a bell when using it to accept a suggestion (#488)

	New configuration option to skip completion suggestions when buffer matches a pattern (#487)

	New configuration option to ignore history entries matching a pattern (#456)

v0.6.3

	Fixed bug moving cursor to end of buffer after accepting suggestion (#453)

v0.6.2

	Fixed bug deleting the last character in the buffer in vi mode (#450)

	Degrade gracefully when user doesn’t have zsh/system module installed (#447)

v0.6.1

	Fixed bug occurring when _complete had been aliased (#443)

v0.6.0

	Added completion suggestion strategy powered by completion system (#111)

	Allow setting ZSH_AUTOSUGGEST_BUFFER_MAX_SIZE to an empty string (#422)

	Don’t fetch suggestions after copy-earlier-word (#439)

	Allow users to unignore zle-* widgets (e.g. zle-line-init) (#432)

v0.5.2

	Allow disabling automatic widget re-binding for better performance (#418)

	Fix async suggestions when SH_WORD_SPLIT is set

	Refactor async mode to use process substitution instead of zpty (#417)

v0.5.1

	Speed up widget rebinding (#413)

	Clean up global variable creations (#403)

	Respect user’s set options when running original widget (#402)

v0.5.0

	Don’t overwrite config with default values (#335)

	Support fallback strategies by supplying array to suggestion config var

	Rename “default” suggestion strategy to “history” to name it based on what it actually does

	Reset opts in some functions affected by GLOB_SUBST (#334)

	Support widgets starting with dashes (ex: -a-widget) (#337)

	Skip async tests in zsh versions less than 5.0.8 because of reliability issues

	Fix handling of newline + carriage return in async pty (#333)

v0.4.3

	Avoid bell when accepting suggestions with autosuggest-accept (#228)

	Don’t fetch suggestions after [up,down]-line-or-beginning-search (#227, #241)

	We are now running CI against new 5.5.1 version

	Fix partial-accept in vi mode (#188)

	Fix suggestion disappearing on fast movement after switching to vicmd mode (#290)

	Fix issue rotating through kill ring with yank-pop (#301)

	Fix issue creating new pty for async mode when previous pty is not properly cleaned up (#249)

v0.4.2

	Fix bug in zsh versions older than 5.0.8 (#296)

	Officially support back to zsh v4.3.11

v0.4.1

	Switch to [[and ((conditionals instead of [(#257)

	Avoid warnnestedvar warnings with typeset -g (#275)

	Replace tabs with spaces in yaml (#268)

	Clean up and fix escaping of special characters (#267)

	Add emacs-forward-word to default list of partial accept widgets (#246)

v0.4.0

	High-level integration tests using RSpec and tmux

	Add continuous integration with Circle CI

	Experimental support for asynchronous suggestions (#170)

	Fix problems with multi-line suggestions (#225)

	Optimize case where manually typing in suggestion

	Avoid wrapping any zle-* widgets (#206)

	Remove support for deprecated options from v0.0.x

	Handle history entries that begin with dashes

	Gracefully handle being sourced multiple times (#126)

	Add enable/disable/toggle widgets to disable/enable suggestions (#219)

v0.3.3

	Switch from $history array to fc builtin for better performance with large HISTFILEs (#164)

	Fix tilde handling when extended_glob is set (#168)

	Add config option for maximum buffer length to fetch suggestions for (#178)

	Add config option for list of widgets to ignore (#184)

	Don’t fetch a new suggestion unless a modification widget actually modifies the buffer (#183)

v0.3.2

	Test runner now supports running specific tests and choosing zsh binary

	Return code from original widget is now correctly passed through (#135)

	Add vi-add-eol to list of accept widgets (#143)

	Escapes widget names within evals to fix problems with irregular widget names (#152)

	Plugin now clears suggestion while within a completion menu (#149)

	.plugin file no longer relies on symbolic link support, fixing issues on Windows (#156)

v0.3.1

	Fixes issue with vi-next-char not accepting suggestion (#137).

	Fixes global variable warning when WARN_CREATE_GLOBAL option enabled (#133).

	Split out a separate test file for each widget.

v0.3.0

	Adds autosuggest-execute widget (PR #124).

	Adds concept of suggestion “strategies” for different ways of fetching suggestions.

	Adds “match_prev_cmd” strategy (PR #131).

	Uses git submodules for testing dependencies.

	Lots of test cleanup.

	Various bug fixes for zsh 5.0.x and sh_word_split option.

v0.2.17

Start of changelog.

Installation

	Packages

	Antigen

	Oh My Zsh

	Manual

Packages

System	Package
————-	————-
Debian / Ubuntu	zsh-autosuggestions OBS repository [https://software.opensuse.org/download.html?project=shells%3Azsh-users%3Azsh-autosuggestions&package=zsh-autosuggestions]
Fedora / CentOS / RHEL / Scientific Linux	zsh-autosuggestions OBS repository [https://software.opensuse.org/download.html?project=shells%3Azsh-users%3Azsh-autosuggestions&package=zsh-autosuggestions]
OpenSUSE / SLE	zsh-autosuggestions OBS repository [https://software.opensuse.org/download.html?project=shells%3Azsh-users%3Azsh-autosuggestions&package=zsh-autosuggestions]
Arch Linux / Manjaro / Antergos / Hyperbola	zsh-autosuggestions [https://www.archlinux.org/packages/zsh-autosuggestions], zsh-autosuggestions-git [https://aur.archlinux.org/packages/zsh-autosuggestions-git]
NixOS	zsh-autosuggestions [https://github.com/NixOS/nixpkgs/blob/master/pkgs/shells/zsh/zsh-autosuggestions/default.nix]
Void Linux	zsh-autosuggestions [https://github.com/void-linux/void-packages/blob/master/srcpkgs/zsh-autosuggestions/template]
Mac OS	homebrew [https://github.com/Homebrew/homebrew-core/blob/master/Formula/zsh-autosuggestions.rb]
NetBSD	pkgsrc [http://ftp.netbsd.org/pub/pkgsrc/current/pkgsrc/shells/zsh-autosuggestions/README.html]

Antigen

	Add the following to your .zshrc:

antigen bundle zsh-users/zsh-autosuggestions

	Start a new terminal session.

Oh My Zsh

	Clone this repository into $ZSH_CUSTOM/plugins (by default ~/.oh-my-zsh/custom/plugins)

git clone https://github.com/zsh-users/zsh-autosuggestions ${ZSH_CUSTOM:-~/.oh-my-zsh/custom}/plugins/zsh-autosuggestions

	Add the plugin to the list of plugins for Oh My Zsh to load (inside ~/.zshrc):

plugins=(
 # other plugins...
 zsh-autosuggestions
)

	Start a new terminal session.

Manual (Git Clone)

	Clone this repository somewhere on your machine. This guide will assume ~/.zsh/zsh-autosuggestions.

git clone https://github.com/zsh-users/zsh-autosuggestions ~/.zsh/zsh-autosuggestions

	Add the following to your .zshrc:

source ~/.zsh/zsh-autosuggestions/zsh-autosuggestions.zsh

	Start a new terminal session.

zsh-autosuggestions

Fish [http://fishshell.com/]-like fast/unobtrusive autosuggestions for zsh.

It suggests commands as you type based on history and completions.

Requirements: Zsh v4.3.11 or later

[image: https://img.shields.io/circleci/build/github/zsh-users/zsh-autosuggestions.svg]CircleCI [https://circleci.com/gh/zsh-users/zsh-autosuggestions]
[image: https://img.shields.io/gitter/room/zsh-users/zsh-autosuggestions.svg]Chat on Gitter [https://gitter.im/zsh-users/zsh-autosuggestions]

Installation

See INSTALL.md.

Usage

As you type commands, you will see a completion offered after the cursor in a muted gray color. This color can be changed by setting the ZSH_AUTOSUGGEST_HIGHLIGHT_STYLE variable. See configuration.

If you press the → key (forward-char widget) or End (end-of-line widget) with the cursor at the end of the buffer, it will accept the suggestion, replacing the contents of the command line buffer with the suggestion.

If you invoke the forward-word widget, it will partially accept the suggestion up to the point that the cursor moves to.

Configuration

You may want to override the default global config variables. Default values of these variables can be found here.

Note: If you are using Oh My Zsh, you can put this configuration in a file in the $ZSH_CUSTOM directory. See their comments on overriding internals [https://github.com/robbyrussell/oh-my-zsh/wiki/Customization#overriding-internals].

Suggestion Highlight Style

Set ZSH_AUTOSUGGEST_HIGHLIGHT_STYLE to configure the style that the suggestion is shown with. The default is fg=8, which will set the foreground color to color 8 from the 256-color palette [https://upload.wikimedia.org/wikipedia/commons/1/15/Xterm_256color_chart.svg]. If your terminal only supports 8 colors, you will need to use a number between 0 and 7.

Background color can also be set, and the suggestion can be styled bold, underlined, or standout. For example, this would show suggestions with bold, underlined, pink text on a cyan background:

ZSH_AUTOSUGGEST_HIGHLIGHT_STYLE="fg=#ff00ff,bg=cyan,bold,underline"

For more info, read the Character Highlighting section of the zsh manual: man zshzle or online [http://zsh.sourceforge.net/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

Note: Some iTerm2 users have reported not being able to see the suggestions [https://github.com/zsh-users/zsh-autosuggestions/issues/416#issuecomment-486516333]. If this affects you, the problem is likely caused by incorrect color settings. In order to correct this, go into iTerm2’s setting, navigate to profile > colors and make sure that the colors for Basic Colors > Background and ANSI Colors > Bright Black are different.

Suggestion Strategy

ZSH_AUTOSUGGEST_STRATEGY is an array that specifies how suggestions should be generated. The strategies in the array are tried successively until a suggestion is found. There are currently three built-in strategies to choose from:

	history: Chooses the most recent match from history.

	completion: Chooses a suggestion based on what tab-completion would suggest. (requires zpty module)

	match_prev_cmd: Like history, but chooses the most recent match whose preceding history item matches the most recently executed command (more info). Note that this strategy won’t work as expected with ZSH options that don’t preserve the history order such as HIST_IGNORE_ALL_DUPS or HIST_EXPIRE_DUPS_FIRST.

For example, setting ZSH_AUTOSUGGEST_STRATEGY=(history completion) will first try to find a suggestion from your history, but, if it can’t find a match, will find a suggestion from the completion engine.

Widget Mapping

This plugin works by triggering custom behavior when certain zle widgets [http://zsh.sourceforge.net/Doc/Release/Zsh-Line-Editor.html#Zle-Widgets] are invoked. You can add and remove widgets from these arrays to change the behavior of this plugin:

	ZSH_AUTOSUGGEST_CLEAR_WIDGETS: Widgets in this array will clear the suggestion when invoked.

	ZSH_AUTOSUGGEST_ACCEPT_WIDGETS: Widgets in this array will accept the suggestion when invoked.

	ZSH_AUTOSUGGEST_EXECUTE_WIDGETS: Widgets in this array will execute the suggestion when invoked.

	ZSH_AUTOSUGGEST_PARTIAL_ACCEPT_WIDGETS: Widgets in this array will partially accept the suggestion when invoked.

	ZSH_AUTOSUGGEST_IGNORE_WIDGETS: Widgets in this array will not trigger any custom behavior.

Widgets that modify the buffer and are not found in any of these arrays will fetch a new suggestion after they are invoked.

Note: A widget shouldn’t belong to more than one of the above arrays.

Disabling suggestion for large buffers

Set ZSH_AUTOSUGGEST_BUFFER_MAX_SIZE to an integer value to disable autosuggestion for large buffers. The default is unset, which means that autosuggestion will be tried for any buffer size. Recommended value is 20.
This can be useful when pasting large amount of text in the terminal, to avoid triggering autosuggestion for strings that are too long.

Asynchronous Mode

Suggestions are fetched asynchronously by default in zsh versions 5.0.8 and greater. To disable asynchronous suggestions and fetch them synchronously instead, unset ZSH_AUTOSUGGEST_USE_ASYNC after sourcing the plugin.

Alternatively, if you are using a version of zsh older than 5.0.8 and want to enable asynchronous mode, set the ZSH_AUTOSUGGEST_USE_ASYNC variable after sourcing the plugin (it can be set to anything). Note that there is a bug [https://github.com/zsh-users/zsh-autosuggestions/issues/364#issuecomment-481423232] in versions of zsh older than 5.0.8 where ctrl + c will fail to reset the prompt immediately after fetching a suggestion asynchronously.

Disabling automatic widget re-binding

Set ZSH_AUTOSUGGEST_MANUAL_REBIND (it can be set to anything) to disable automatic widget re-binding on each precmd. This can be a big boost to performance, but you’ll need to handle re-binding yourself if any of the widget lists change or if you or another plugin wrap any of the autosuggest widgets. To re-bind widgets, run _zsh_autosuggest_bind_widgets.

Ignoring history suggestions that match a pattern

Set ZSH_AUTOSUGGEST_HISTORY_IGNORE to a glob pattern [http://zsh.sourceforge.net/Doc/Release/Expansion.html#Glob-Operators] to prevent offering suggestions for history entries that match the pattern. For example, set it to "cd *" to never suggest any cd commands from history. Or set to "?(#c50,)" to never suggest anything 50 characters or longer.

Note: This only affects the history and match_prev_cmd suggestion strategies.

Skipping completion suggestions for certain cases

Set ZSH_AUTOSUGGEST_COMPLETION_IGNORE to a glob pattern [http://zsh.sourceforge.net/Doc/Release/Expansion.html#Glob-Operators] to prevent offering completion suggestions when the buffer matches that pattern. For example, set it to "git *" to disable completion suggestions for git subcommands.

Note: This only affects the completion suggestion strategy.

Key Bindings

This plugin provides a few widgets that you can use with bindkey:

	autosuggest-accept: Accepts the current suggestion.

	autosuggest-execute: Accepts and executes the current suggestion.

	autosuggest-clear: Clears the current suggestion.

	autosuggest-fetch: Fetches a suggestion (works even when suggestions are disabled).

	autosuggest-disable: Disables suggestions.

	autosuggest-enable: Re-enables suggestions.

	autosuggest-toggle: Toggles between enabled/disabled suggestions.

For example, this would bind ctrl + space to accept the current suggestion.

bindkey '^ ' autosuggest-accept

Troubleshooting

If you have a problem, please search through the list of issues on GitHub [https://github.com/zsh-users/zsh-autosuggestions/issues?q=] to see if someone else has already reported it.

Reporting an Issue

Before reporting an issue, please try temporarily disabling sections of your configuration and other plugins that may be conflicting with this plugin to isolate the problem.

When reporting an issue, please include:

	The smallest, simplest .zshrc configuration that will reproduce the problem. See this comment [https://github.com/zsh-users/zsh-autosuggestions/issues/102#issuecomment-180944764] for a good example of what this means.

	The version of zsh you’re using (zsh --version)

	Which operating system you’re running

Uninstallation

	Remove the code referencing this plugin from ~/.zshrc.

	Remove the git repository from your hard drive

rm -rf ~/.zsh/zsh-autosuggestions # Or wherever you installed

Development

Build Process

Edit the source files in src/. Run make to build zsh-autosuggestions.zsh from those source files.

Pull Requests

Pull requests are welcome! If you send a pull request, please:

	Request to merge into the develop branch (NOT master)

	Match the existing coding conventions.

	Include helpful comments to keep the barrier-to-entry low for people new to the project.

	Write tests that cover your code as much as possible.

Testing

Tests are written in ruby using the rspec [http://rspec.info/] framework. They use tmux [https://tmux.github.io/] to drive a pseudoterminal, sending simulated keystrokes and making assertions on the terminal content.

Test files live in spec/. To run the tests, run make test. To run a specific test, run TESTS=spec/some_spec.rb make test. You can also specify a zsh binary to use by setting the TEST_ZSH_BIN environment variable (ex: TEST_ZSH_BIN=/bin/zsh make test).

A docker image for testing is available on docker hub [https://hub.docker.com/r/ericfreese/zsh-autosuggestions-test]. It comes with ruby, the bundler dependencies, and all supported versions of zsh installed.

Pull the docker image with:

docker pull ericfreese/zsh-autosuggestions-test

To run the tests for a specific version of zsh (where <version> below is substituted with the contents of a line from the ZSH_VERSIONS file):

docker run -it -e TEST_ZSH_BIN=zsh-<version> -v $PWD:/zsh-autosuggestions zsh-autosuggestions-test make test

License

This project is licensed under MIT license [http://opensource.org/licenses/MIT].
For the full text of the license, see the LICENSE file.

name: Bug report
about: Create a report to help us improve
title: ‘’
labels: bug
assignees: ‘’

Describe the bug

To Reproduce

Steps to reproduce the behavior:

% zsh -df
% source path/to/zsh-autosuggestions.zsh
% ... # what do you do to reproduce?

Expected behavior

Screenshots

Desktop

	OS + distribution:

	Zsh version:

	Plugin version:

Additional context

name: Feature request
about: Suggest an idea for this project
title: ‘’
labels: enhancement
assignees: ‘’

Is your feature request related to a problem? Please describe.

Describe the solution you’d like

Describe alternatives you’ve considered

Additional context

Contributing

How to Contribute to zsh-completions

Contributions are welcome, just make sure you follow the guidelines:

	Completions are not accepted when already available in zsh.

	Completions are not accepted when already available in their original project.

	Please do not just copy/paste someone else’s completion, ask before.

	Partially implemented completions are not accepted.

	Please add a header containing authors, status and origin of the script and license header if you do not wish to use the Zsh license (example here).

	Any reasonable open source license is acceptable but note that we recommend the use of the Zsh license and that you should use it if you hope for the function to migrate to zsh itself.

	Please try to follow the Zsh completion style guide [https://github.com/zsh-users/zsh/blob/master/Etc/completion-style-guide].

	Please send one separate pull request per file.

	Send a pull request or ask for committer access.

Contributing Completion Functions to Zsh

The zsh project itself welcomes completion function contributions via
github pull requests [https://github.com/zsh-users/zsh/],
gitlab merge requests [https://gitlab.com/zsh-org/zsh/] or via patch
files sent to its mailing list, zsh-workers@zsh.org.

Contributing to zsh has the advantage of reaching the most users.

Including Completion Functions in Upstream Projects

Many upstream projects include zsh completions.

If well maintained, this has the advantage that users get a completion
function that matches the installed version of their software.

If you are the upstream maintainer this is a good choice. If the project
already includes completions for bash, fish, tcsh, etc then they are
likely open to including zsh’s too. It can also be a good option for
completions handling commands that are system or distribution specific.

Ideally, arrange for the project’s build system to install the
completion function in $prefix/share/zsh/site-functions.

zsh-completions [image: https://img.shields.io/github/release/zsh-users/zsh-completions.svg]GitHub release [image: https://img.shields.io/github/contributors/zsh-users/zsh-completions.svg]GitHub contributors [image: https://img.shields.io/badge/IRC-%23zsh--completions-yellow.svg]IRC [image: https://badges.gitter.im/zsh-users/zsh-completions.svg]Gitter [https://gitter.im/zsh-users/zsh-completions?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge]

Additional completion definitions for Zsh [https://www.zsh.org/].

This projects aims at gathering/developing new completion scripts that are not available in Zsh yet. The scripts may be contributed to the Zsh project when stable enough.

Usage

Using packages

System	Package
————-	————-
Debian / Ubuntu	zsh-completions OBS repository [https://software.opensuse.org/download.html?project=shells%3Azsh-users%3Azsh-completions&package=zsh-completions]
Fedora / CentOS / RHEL / Scientific Linux	zsh-completions OBS repository [https://software.opensuse.org/download.html?project=shells%3Azsh-users%3Azsh-completions&package=zsh-completions]
OpenSUSE / SLE	zsh-completions OBS repository [https://software.opensuse.org/download.html?project=shells%3Azsh-users%3Azsh-completions&package=zsh-completions]
Arch Linux / Manjaro / Antergos / Hyperbola	zsh-completions [https://www.archlinux.org/packages/zsh-completions], zsh-completions-git [https://aur.archlinux.org/packages/zsh-completions-git]
Gentoo / Funtoo	app-shells/zsh-completions [https://packages.gentoo.org/packages/app-shells/zsh-completions]
NixOS	zsh-completions [https://github.com/NixOS/nixpkgs/blob/master/pkgs/shells/zsh/zsh-completions/default.nix]
Void Linux	zsh-completions [https://github.com/void-linux/void-packages/blob/master/srcpkgs/zsh-completions/template]
Slackware	Slackbuilds [https://slackbuilds.org/repository/14.2/system/zsh-completions/]
macOS	homebrew [https://github.com/Homebrew/homebrew-core/blob/master/Formula/zsh-completions.rb], MacPorts [https://github.com/macports/macports-ports/blob/master/sysutils/zsh-completions/Portfile]
NetBSD	pkgsrc [https://ftp.netbsd.org/pub/pkgsrc/current/pkgsrc/shells/zsh-completions/README.html]
FreeBSD	shells/zsh-completions [https://www.freshports.org/shells/zsh-completions]

Using zsh frameworks

antigen [https://github.com/zsh-users/antigen]

Add antigen bundle zsh-users/zsh-completions to your ~/.zshrc.

oh-my-zsh [https://github.com/ohmyzsh/ohmyzsh]

	Clone the repository inside your oh-my-zsh repo:

 git clone https://github.com/zsh-users/zsh-completions ${ZSH_CUSTOM:-${ZSH:-~/.oh-my-zsh}/custom}/plugins/zsh-completions

	Add it to FPATH in your .zshrc by adding the following line before source "$ZSH/oh-my-zsh.sh":

 fpath+=${ZSH_CUSTOM:-${ZSH:-~/.oh-my-zsh}/custom}/plugins/zsh-completions/src

Note: adding it as a regular Oh My ZSH! plugin will not work properly (see #603 [https://github.com/zsh-users/zsh-completions/issues/603]).

zinit [https://github.com/zdharma-continuum/zinit]

Add zinit light zsh-users/zsh-completions to your ~/.zshrc.

Manual installation

	Clone the repository:

 git clone https://github.com/zsh-users/zsh-completions.git

	Include the directory in your $fpath, for example by adding in ~/.zshrc:

 fpath=(path/to/zsh-completions/src $fpath)

	You may have to force rebuild zcompdump:

 rm -f ~/.zcompdump; compinit

Contributing

Contributions are welcome, see CONTRIBUTING [https://github.com/zsh-users/zsh-completions/blob/master/CONTRIBUTING].

License

Completions use the Zsh license, unless explicitly mentioned in the file header.
See LICENSE [https://github.com/zsh-users/zsh-completions/blob/master/LICENSE] for more information.

	[] This compdef is not already available in zsh.

	[] This compdef is not already available in their original project.

	[] I am the original author, or I have authorization to submit this work.

	[] This is a finished work.

	[] It has a header containing authors, status and origin of the script.

	[] It has a license header or I accept that it will be licensed under the terms of the Zsh license.

 Copyright (c) 2010-2020 zsh-syntax-highlighting contributors
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

	Neither the name of the zsh-syntax-highlighting contributors nor the names of its contributors
may be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Hacking on zsh-syntax-highlighting itself

This document includes information for people working on z-sy-h itself: on the
core driver (zsh-syntax-highlighting.zsh), on the highlighters in the
distribution, and on the test suite. It does not target third-party
highlighter authors (although they may find it an interesting read).

The main highlighter

The following function pz is useful when working on the main highlighting:

pq() {
 (($#argv)) || return 0
 print -r -l -- ${(qqqq)argv}
}
pz() {
 local arg
 for arg; do
 pq ${(z)arg}
 done
}

It prints, for each argument, its token breakdown, similar to how the main
loop of the main highlighter sees it.

Testing the brackets highlighter

Since the test harness empties ZSH_HIGHLIGHT_STYLES and the brackets
highlighter interrogates ZSH_HIGHLIGHT_STYLES to determine how to highlight,
tests must set the bracket-level-# keys themselves. For example:

ZSH_HIGHLIGHT_STYLES[bracket-level-1]=
ZSH_HIGHLIGHT_STYLES[bracket-level-2]=

BUFFER='echo ({x})'

expected_region_highlight=(
 "6 6 bracket-level-1" # (
 "7 7 bracket-level-2" # {
 "9 9 bracket-level-2" # }
 "10 10 bracket-level-1" #)
)

Testing the pattern and regexp highlighters

Because the pattern and regexp highlighters modifies region_highlight
directly instead of using _zsh_highlight_add_highlight, the test harness
cannot get the ZSH_HIGHLIGHT_STYLES keys. Therefore, when writing tests, use
the style itself as third word (cf. the
documentation for expected_region_highlight). For example:

ZSH_HIGHLIGHT_PATTERNS+=('rm -rf *' 'fg=white,bold,bg=red')

BUFFER='rm -rf /'

expected_region_highlight=(
 "1 8 fg=white,bold,bg=red" # rm -rf /
)

Memos and commas

We append to region_highlight as follows:

region_highlight+=("$start $end $spec, memo=zsh-syntax-highlighting")

That comma is required to cause zsh 5.8 and older to ignore the memo without
ignoring the $spec. It’s a hack, but given that no further 5.8.x patch
releases are planned, it’s been deemed acceptable. See issue #418 and the
cross-referenced issues.

Miscellany

If you work on the driver (zsh-syntax-highlighting.zsh), you may find the following zstyle useful:

zstyle ':completion:*:*:*:*:globbed-files' ignored-patterns {'*/',}zsh-syntax-highlighting.plugin.zsh

IRC channel

We’re on #zsh-syntax-highlighting on Libera.Chat.

How to install

Using packages

	Arch Linux: community/zsh-syntax-highlighting [https://www.archlinux.org/packages/zsh-syntax-highlighting] / AUR/zsh-syntax-highlighting-git [https://aur.archlinux.org/packages/zsh-syntax-highlighting-git]

	Debian: zsh-syntax-highlighting package in stretch [https://packages.debian.org/zsh-syntax-highlighting] (or in OBS repository [https://software.opensuse.org/download.html?project=shells%3Azsh-users%3Azsh-syntax-highlighting&package=zsh-syntax-highlighting])

	Fedora: zsh-syntax-highlighting package [https://bodhi.fedoraproject.org/updates/?packages=zsh-syntax-highlighting] in Fedora 24+ (or in OBS repository [https://software.opensuse.org/download.html?project=shells%3Azsh-users%3Azsh-syntax-highlighting&package=zsh-syntax-highlighting])

	FreeBSD: pkg install zsh-syntax-highlighting (port name: shells/zsh-syntax-highlighting [http://www.freshports.org/textproc/zsh-syntax-highlighting/])

	Gentoo: app-shells/zsh-syntax-highlighting [https://packages.gentoo.org/packages/app-shells/zsh-syntax-highlighting]

	Mac OS X / Homebrew: brew install zsh-syntax-highlighting (formula [https://github.com/Homebrew/homebrew-core/blob/master/Formula/zsh-syntax-highlighting.rb])

	NetBSD: pkg_add zsh-syntax-highlighting (port name: shells/zsh-syntax-highlighting [http://cvsweb.netbsd.org/bsdweb.cgi/pkgsrc/shells/zsh-syntax-highlighting/])

	OpenBSD: pkg_add zsh-syntax-highlighting (port name: shells/zsh-syntax-highlighting [https://cvsweb.openbsd.org/ports/shells/zsh-syntax-highlighting/])

	openSUSE / SLE: zsh-syntax-highlighting package in OBS repository [https://software.opensuse.org/download.html?project=shells%3Azsh-users%3Azsh-syntax-highlighting&package=zsh-syntax-highlighting]

	RHEL / CentOS / Scientific Linux: zsh-syntax-highlighting package in OBS repository [https://software.opensuse.org/download.html?project=shells%3Azsh-users%3Azsh-syntax-highlighting&package=zsh-syntax-highlighting]

	Ubuntu: zsh-syntax-highlighting package in Xenial [https://launchpad.net/ubuntu/+source/zsh-syntax-highlighting] (or in OBS repository [https://software.opensuse.org/download.html?project=shells%3Azsh-users%3Azsh-syntax-highlighting&package=zsh-syntax-highlighting])

	Void Linux: zsh-syntax-highlighting package in XBPS [https://github.com/void-linux/void-packages/tree/master/srcpkgs/zsh-syntax-highlighting]

See also repology’s cross-distro index [https://repology.org/metapackage/zsh-syntax-highlighting/versions]

In your ~/.zshrc

Simply clone this repository and source the script:

git clone https://github.com/zsh-users/zsh-syntax-highlighting.git
echo "source ${(q-)PWD}/zsh-syntax-highlighting/zsh-syntax-highlighting.zsh" >> ${ZDOTDIR:-$HOME}/.zshrc

Then, enable syntax highlighting in the current interactive shell:

source ./zsh-syntax-highlighting/zsh-syntax-highlighting.zsh

If git is not installed, download and extract a snapshot of the latest
development tree from:

https://github.com/zsh-users/zsh-syntax-highlighting/archive/master.tar.gz

Note the source command must be at the end of ~/.zshrc.

With a plugin manager

Note that zsh-syntax-highlighting must be the last plugin sourced.

The zsh-syntax-highlighting authors recommend manual installation over the use
of a framework or plugin manager.

This list is incomplete as there are too many
frameworks / plugin managers [https://github.com/unixorn/awesome-zsh-plugins#frameworks] to list them all here.

Antigen [https://github.com/zsh-users/antigen]

Add antigen bundle zsh-users/zsh-syntax-highlighting as the last bundle in
your .zshrc.

Fig [https://fig.io]

Click the Install Plugin button on the Fig plugin page [https://fig.io/plugins/other/zsh-syntax-highlighting].

Oh-my-zsh [https://github.com/robbyrussell/oh-my-zsh]

	Clone this repository in oh-my-zsh’s plugins directory:

git clone https://github.com/zsh-users/zsh-syntax-highlighting.git ${ZSH_CUSTOM:-~/.oh-my-zsh/custom}/plugins/zsh-syntax-highlighting

	Activate the plugin in ~/.zshrc:

plugins=([plugins...] zsh-syntax-highlighting)

	Restart zsh (such as by opening a new instance of your terminal emulator).

Prezto [https://github.com/sorin-ionescu/prezto]

Zsh-syntax-highlighting is included with Prezto. See the
Prezto documentation [https://github.com/sorin-ionescu/prezto/tree/master/modules/syntax-highlighting] to enable and configure highlighters.

zgen [https://github.com/tarjoilija/zgen]

Add zgen load zsh-users/zsh-syntax-highlighting to the end of your .zshrc.

zplug [https://github.com/zplug/zplug]

Add zplug "zsh-users/zsh-syntax-highlighting", defer:2 to your .zshrc.

zplugin [https://github.com/psprint/zplugin]

Add zplugin load zsh-users/zsh-syntax-highlighting to the end of your
.zshrc.

System-wide installation

Any of the above methods is suitable for a single-user installation,
which requires no special privileges. If, however, you desire to install
zsh-syntax-highlighting system-wide, you may do so by running

make install

and directing your users to add

source /usr/local/share/zsh-syntax-highlighting/zsh-syntax-highlighting.zsh

to their .zshrcs.

zsh-syntax-highlighting [image: https://github.com/zsh-users/zsh-syntax-highlighting/workflows/Tests/badge.svg]Build Status [https://github.com/zsh-users/zsh-syntax-highlighting/actions]

Fish shell [https://fishshell.com/]-like syntax highlighting for Zsh [https://www.zsh.org/].

Requirements: zsh 4.3.11+.

This package provides syntax highlighting for the shell zsh. It enables
highlighting of commands whilst they are typed at a zsh prompt into an
interactive terminal. This helps in reviewing commands before running
them, particularly in catching syntax errors.

Some examples:

Before: [image: ../../../_images/before1-smaller.png]Screenshot #1.1

After: [image: ../../../_images/after1-smaller.png]Screenshot #1.2

Before: [image: ../../../_images/before2-smaller.png]Screenshot #2.1

After: [image: ../../../_images/after2-smaller.png]Screenshot #2.2

Before: [image: ../../../_images/before3-smaller.png]Screenshot #3.1

After: [image: ../../../_images/after3-smaller.png]Screenshot #3.2

Before: [image: ../../../_images/before4-smaller.png]Screenshot #4.1

After: [image: ../../../_images/after4-smaller.png]Screenshot #4.2

How to install

See INSTALL.md.

FAQ

Why must zsh-syntax-highlighting.zsh be sourced at the end of the .zshrc file?

zsh-syntax-highlighting works by hooking into the Zsh Line Editor (ZLE) and
computing syntax highlighting for the command-line buffer as it stands at the
time z-sy-h’s hook is invoked.

In zsh 5.2 and older,
zsh-syntax-highlighting.zsh hooks into ZLE by wrapping ZLE widgets. It must
be sourced after all custom widgets have been created (i.e., after all zle -N
calls and after running compinit) in order to be able to wrap all of them.
Widgets created after z-sy-h is sourced will work, but will not update the
syntax highlighting.

In zsh newer than 5.8 (not including 5.8 itself),
zsh-syntax-highlighting uses the add-zle-hook-widget facility to install
a zle-line-pre-redraw hook. Hooks are run in order of registration,
therefore, z-sy-h must be sourced (and register its hook) after anything else
that adds hooks that modify the command-line buffer.

Does syntax highlighting work during incremental history search?

Highlighting the command line during an incremental history search (by default bound to
to Ctrl+R in zsh’s emacs keymap) requires zsh 5.4 or newer.

Under zsh versions older than 5.4, the zsh-default underlining [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting]
of the matched portion of the buffer remains available, but zsh-syntax-highlighting’s
additional highlighting is unavailable. (Those versions of zsh do not provide
enough information to allow computing the highlighting correctly.)

See issues #288 [https://github.com/zsh-users/zsh-syntax-highlighting/pull/288] and #415 [https://github.com/zsh-users/zsh-syntax-highlighting/pull/415] for details.

How are new releases announced?

There is currently no “push” announcements channel. However, the following
alternatives exist:

	GitHub’s RSS feed of releases: https://github.com/zsh-users/zsh-syntax-highlighting/releases.atom

	An anitya entry: https://release-monitoring.org/project/7552/

How to tweak

Syntax highlighting is done by pluggable highlighter scripts. See the
documentation on highlighters for details and
configuration settings.

Changes in HEAD

Changes fixed as part of the switch to zle-line-pre-redraw

The changes in this section were fixed by switching to a zle-line-pre-redraw-based
implementation.

Note: The new implementation will only be used on future zsh releases,
numbered 5.8.1.1 and newer, due to interoperability issues with other plugins
(issues #418 and #579). The underlying zsh feature has been available since
zsh 5.3.

Whilst under development, the new implementation was known as the
“feature/redrawhook” topic branch.

	Fixed: Highlighting not triggered after popping a buffer from the buffer stack
(using the push-line widget, default binding: M-q)
[#40]

	Fixed: Invoking completion when there were no matches removed highlighting
[#90, #470]

	Fixed: Two successive deletes followed by a yank only yanked the latest
delete, rather than both of them
[#150, #151, #160; cf. #183]

	Presumed fixed: Completing $(xsel) results in an error message from xsel,
with pre-2017 versions of xsel. (For 2017 vintage and newer, see the issue
for details.)
[#154]

	Fixed: When the standard bracketed-paste-magic widget is in use, pastes were slow
[#295]

	Fixed: No way to prevent a widget from being wrapped
[#324]

	Fixed: No highlighting while cycling menu completion
[#375]

	Fixed: Does not coexist with the IGNORE_EOF option
[#377]

	Fixed: The undefined-key widget was wrapped
[#421]

	Fixed: Does not coexist with the standard surround family of widgets
[#520]

	Fixed: First completed filename doesn’t get path highlighting
[#632]

Other changes

	Add issue #712 to the previous release’s changelog (hereinafter).

Changes in 0.8.0-alpha1-pre-redrawhook

Notice about an improbable-but-not-impossible forward incompatibility

Everyone can probably skip this section.

The master branch of zsh-syntax-highlighting uses a zsh feature that has not
yet appeared in a zsh release: the memo= feature, added to zsh in commit
zsh-5.8-172-gdd6e702ee (after zsh 5.8, before zsh 5.9). In the unlikely event
that this zsh feature should change in an incompatible way before the next
stable zsh release, set zsh_highlight__memo_feature=0 in your .zshrc files to
disable use of the new feature.

z-sy-h dogfoods the new, unreleased zsh feature because that feature was
added to zsh at z-sy-h’s initiative. The new feature is used in the fix
to issue #418.

Incompatible changes:

	An unsuccessful completion (a ⮀ Tab press that doesn’t change the
command line) no longer causes highlighting to be lost. Visual feedback can
alternatively be achieved by setting the format zstyle under the warnings
tag, for example,

 zstyle ':completion:*:warnings' format '%F{red}No matches%f'

Refer to the [description of the format style in zshcompsys(1)]
zshcompsys-Standard-Styles-format [https://zsh.sourceforge.io/Doc/Release/Completion-System.html#index-format_002c-completion-style].

(#90, part of #245 (feature/redrawhook))

Other changes:

	Document $ZSH_HIGHLIGHT_MAXLENGTH.
[#698]

	Optimize highlighting unquoted words (words that are not in single quotes, double quotes, backticks, or dollar-single-quotes)
[#730]

	Redirection operators (e.g., < and >) are now highlighted by default
[#646]

	Propertly terminate noglob scope in try/always blocks
[#577]

	Don’t error out when KSH_ARRAYS is set in the calling scope
[#622, #689]

	Literal semicolons in array assignments (foo=(bar ; baz)) are now
highlighted as errors.
[3ca93f864fb6]

	Command separators in array assignments (foo=(bar | baz)) are now
highlighted as errors.
[#651, 81267ca3130c]

	Support parameter elision in command position (e.g., $foo ls where $foo is unset or empty)
[#667]

	Don’t consider the filename in sudo -e /path/to/file to be a command position
[#678]

	Don’t look up absolute directory names in $cdpath
[2cc2583f8f12, part of #669]

	Fix exec 2>&1; being highlighted as an error.
[#676]

	Fix : $(<*) being highlighted as globbing.
[#582]

	Fix cat < * being highlighting as globbing when the MULTIOS option is unset.
[#583]

	Fix echo >&2 highlighting the 2 as a filename if a file by that name happened to exist
[#694, part of #645]

	Fix echo >&- highlighting the - as a filename if a file by that name happened to exist
[part of #645]

	Fix echo >&p highlighting the p as a filename if a file by that name happened to exist
[part of #645]

	Fix wrong highlighting of unquoted parameter expansions under zsh 5.2 and older
[e165f18c758e]

	Highlight global aliases
[#700]

	Highlight : =nosuchcommand' as an error (when the EQUALS` option hasn’t been unset).
[#430]

	Highlight reserved word after assignments as errors (e.g., foo=bar (ls;))
[#461]

	Correctly highlight [[foo && bar || baz]].

	Highlight non-executable files in command position correctly (e.g., % /etc/passwd)
[#202, #669]

	Highlight directories in command position correctly, including AUTO_CD support
[#669]

	Recognize env as a precommand (e.g., env FOO=bar ls)

	Recognize strace as a precommand

	Fix an error message on stderr before every prompt when the WARN_NESTED_VAR zsh option is set:
_zsh_highlight_main__precmd_hook:1: array parameter _zsh_highlight_main__command_type_cache set in enclosing scope in function _zsh_highlight_main__precmd_hook
[#727, #731, #732, #733]

	Fix highlighting of alias whose definitions use a simple command terminator
(such as ;, |, &&) before a newline
[#677; had regressed in 0.7.0]

	Highlight arithmetic expansions (e.g., $((42)))
[#607 #649 #704]

	Highlight the parentheses of array assignments as reserved words (foo=(bar)).
The assign style remains supported and has precedence.
[#585]

	Fix interoperability issue with other plugins that use highlighting. The fix
requires zsh 5.8.0.3 or newer. (zsh 5.8.0.2-dev from the master branch,
revision zsh-5.8-172-gdd6e702ee or newer is also fine.)
[#418, https://github.com/okapia/zsh-viexchange/issues/1]

	Improve performance of the brackets highlighter.

	Fix highlighting of pre-command redirections (e.g., the $fn in <$fn cat)
[#712]

Changes in version 0.7.1

	Remove out-of-date information from the 0.7.0 changelog.

Changes in version 0.7.0

This is a stable bugfix and feature release. Major new features and changes include:

	Add ZSH_HIGHLIGHT_DIRS_BLACKLIST to disable “path” and “path prefix”
highlighting for specific directories
[#379]

	Add the “regexp” highlighter, modelled after the pattern highlighter
[4e6f60063f1c]

	When a word uses globbing, only the globbing metacharacters will be highlighted as globbing:
in : foo*bar, only the * will be blue.
[e48af357532c]

	Highlight pasted quotes (e.g., : foo"bar")
[dc1b2f6fa4bb]

	Highlight command substitutions (: `ls`, : $(ls))
[c0e64fe13178 and parents, e86f75a840e7, et al]

	Highlight process substitutions (: >(nl), : <(pwd), : =(git diff))
[c0e64fe13178 and parents, e86f75a840e7, et al]

	Highlight command substitutions inside double quotes (: "`foo`")
[f16e858f0c83]

	Highlight many precommands (e.g., nice, stdbuf, eatmydata;
see $precommand_options in the source)

	Highlight numeric globs (e.g., echo /lib<->)

	Assorted improvements to aliases highlighting
(e.g.,
alias sudo_u='sudo -u'; sudo_u jrandom ls,
alias x=y y=z z=nosuchcommand; x,
alias ls='ls -l'; \ls)
[f3410c5862fc, 57386f30aec8, #544, and many others]

	Highlight some more syntax errors
[dea05e44e671, 298ef6a2fa30]

	New styles: named file descriptors, RC_QUOTES, and unclosed quotes (e.g., echo "foo<CURSOR>)
[38c794a978cd, 25ae1c01216c, 967335dfc5fd]

	The ‘brackets’ highlighting no longer treats quotes specially.
[ecdda36ef56f]

Selected bugfixes include:

	Highlight sudo correctly when it’s not installed
[26a82113b08b]

	Handle some non-default options being set in zshrc
[b07ada1255b7, a2a899b41b8, 972ad197c13d, b3f66fc8748f]

	Fix off-by-one highlighting in vi “visual” mode (vicmd keymap)
[be3882aeb054]

	The ‘yank-pop’ widget is not wrapped
[#183]

Known issues include:

	A multiline alias that uses a simple command terminator (such as ;, |, &&)
before a newline will incorrectly be highlighted as an error. See issue #677
for examples and workarounds.
[#677]
[UPDATE: Fixed in 0.8.0]

Changes in version 0.6.0

This is a stable release, featuring bugfixes and minor improvements.

Performance improvements:

(none)

Added highlighting of:

	The isearch and suffix $zle_highlight settings [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].
(79e4d3d12405, 15db71abd0cc, b56ee542d619; requires zsh 5.3 for $ISEARCHMATCH_ACTIVE / $SUFFIX_ACTIVE support)

	Possible history expansions in double-quoted strings.
(76ea9e1df316)

	Mismatched if/then/elif/else/fi.
(73cb83270262)

Fixed highlighting of:

	A comment line followed by a non-comment line.
(#385, 9396ad5c5f9c)

	An unquoted $* (expands to the positional parameters).
(237f89ad629f)

	history-incremental-pattern-search-backward under zsh 5.3.1.
(#407, #415, 462779629a0c)

API changes (for highlighter authors):

(none)

Developer-visible changes:

	tests: Set the ALIAS_FUNC_DEF option for zsh 5.4 compatibility.
(9523d6d49cb3)

Other changes:

	docs: Added before/after screenshots.
(cd9ec14a65ec..b7e277106b49)

	docs: Link Fedora package.
(3d74aa47e4a7, 5feed23962df)

	docs: Link FreeBSD port.
(626c034c68d7)

	docs: Link OpenSUSE Build Service packages
(#419, dea1fedc7358)

	Prevent user-defined aliases from taking effect in z-sy-h’s own code.
(#390, 2dce602727d7, 8d5afe47f774; and #392, #395, b8fa1b9dc954)

	docs: Update zplug installation instructions.
(#399, 4f49c4a35f17)

	Improve “unhandled ZLE widget ‘foo’” error message.
(#409, be083d7f3710)

	Fix printing of “failed loading highlighters” error message.
(#426, ad522a091429)

Changes in version 0.5.0

Performance improvements:

We thank Sebastian Gniazdowski and “m0viefreak” for significant contributions
in this area.

	Optimize string operations in the main (default) highlighter.
(#372/3cb58fd7d7b9, 02229ebd6328, ef4bfe5bcc14, #372/c6b6513ac0d6, #374/15461e7d21c3)

	Command word highlighting: Use the zsh/parameter module to avoid forks.
Memoize (cache) the results.
(#298, 3ce01076b521, 2f18ba64e397, 12b879caf7a6; #320, 3b67e656bff5)

	Avoid forks in the driver and in the root highlighter.
(b9112aec798a, 38c8fbea2dd2)

Added highlighting of:

	pkexec (a precommand).
(#248, 4f3910cbbaa5)

	Aliases that cannot be defined normally nor invoked normally (highlighted as an error).
(#263 (in part), 28932316cca6)

	Path separators (/) — the default behaviour remains to highlight path separators
and path components the same way.
(#136, #260, 6cd39e7c70d3, 9a934d291e7c, f3d3aaa00cc4)

	Assignments to individual positional arguments (42=foo to assign to $42).
(f4036a09cee3)

	Linewise region (the visual-line-mode widget, bound to V in zsh’s vi keymap).
(#267, a7a7f8b42280, ee07588cfd9b)

	Command-lines recalled by isearch mode; requires zsh≥5.3.
(#261 (in part); #257; 4ad311ec0a68)

	Command-lines whilst the IGNORE_BRACES or IGNORE_CLOSE_BRACES option is in effect.
(a8a6384356af, 02807f1826a5)

	Mismatched parentheses and braces (in the main highlighter).
(51b9d79c3bb6, 2fabf7ca64b7, a4196eda5e6f, and others)

	Mismatched do/done keywords.
(b2733a64da93)

	Mismatched foreach/end keywords.
(#96, 2bb8f0703d8f)

	In Bourne-style function definitions, when the MULTI_FUNC_DEF option is set
(which is the default), highlight the first word in the function body as
a command word: f() { g "$@" }.
(6f91850a01e1)

	always blocks.
(#335, e5782e4ddfb6)

	Command substitutions inside double quotes, "$(echo foo)".
(#139 (in part), c3913e0d8ead)

	Non-alphabetic parameters inside double quotes ("$$", "$#", "$*", "$@", "$?", "$-").
(4afe670f7a1b, 44ef6e38e5a7)

	Command words from future versions of zsh (forward compatibly).
This also adds an arg0 style that all other command word styles fall back to.
(b4537a972eed, bccc3dc26943)

	Escaped history expansions inside double quotes: : "\!"
(28d7056a7a06, et seq)

Fixed highlighting of:

	Command separator tokens in syntactically-invalid positions.
(09c4114eb980)

	Redirections with a file descriptor number at command word.
(#238 (in part), 73ee7c1f6c4a)

	The select prompt, $PS3.
(#268, 451665cb2a8b)

	Values of variables in vared.
(e500ca246286)

	! as an argument (neither a history expansion nor a reserved word).
(4c23a2fd1b90)

	“division by zero” error under the brackets highlighter when $ZSH_HIGHLIGHT_STYLES is empty.
(f73f3d53d3a6)

	Process substitutions, <(pwd) and >(wc -l).
(#302, 6889ff6bd2ad, bfabffbf975c, fc9c892a3f15)

	The non-SHORT_LOOPS form of repeat loops: repeat 42; do true; done.
(#290, 4832f18c50a5, ef68f50c048f, 6362c757b6f7)

	Broken symlinks (are now highlighted as files).
(#342, 95f7206a9373, 53083da8215e)

	Lines accepted from isearch mode.
(#284; #257, #259, #288; 5bae6219008b, a8fe22d42251)

	Work around upstream bug that triggered when the command word was a relative
path, that when interpreted relative to a $PATH directory denoted a command;
the effect of that upstream bug was that the relative path was cached as
a “valid external command name”.
(#354, #355, 51614ca2c994, fdaeec45146b, 7d38d07255e4;
upstream fix slated to be released in 5.3 (workers/39104))

	After accepting a line with the cursor on a bracket, the matching bracket
of the bracket under the cursor no longer remains highlighted (with the
brackets highlighter).
(4c4baede519a)

	The first word on a new line within an array assignment or initialization is no
longer considered a command position.
(8bf423d16d46)

	Subshells that end at command position, (A=42), (true;).
(#231, 7fb6f9979121; #344, 4fc35362ee5a)

	Command word after array assignment, a=(lorem ipsum) pwd.
(#330, 7fb6f9979121)

API changes (for highlighter authors):

	New interface _zsh_highlight_add_highlight.
(341a3ae1f015, c346f6eb6fb6)

	tests: Specify the style key, not its value, in test expectations.
(a830613467af, fd061b5730bf, eaa4335c3441, among others)

	Module author documentation improvements.
(#306 (in part), 217669270418, 0ff354b44b6e, 80148f6c8402, 364f206a547f, and others)

	The driver no longer defines a _zsh_highlight_${highlighter}_highlighter_cache
variable, which is in the highlighters’ namespace.
(3e59ab41b6b8, 80148f6c8402, f91a7b885e7d)

	Rename highlighter entry points. The old names remain supported for
backwards compatibility.
(a3d5dfcbdae9, c793e0dceab1)

	tests: Add the “NONE” expectation.
(4da9889d1545, 13018f3dd735, d37c55c788cd)

	tests: consider a test that writes to stderr to have failed.
(#291, 1082067f9315)

Developer-visible changes:

	Add make quiet-test.
(9b64ad750f35)

	test harness: Better quote replaceables in error messages.
(30d8f92df225)

	test harness: Fix exit code for XPASS.
(bb8d325c0cbd)

	Create HACKING.md.
(cef49752fd0e)

	tests: Emit a description for PASS test points.
(6aa57d60aa64, f0bae44b76dd)

	tests: Create a script that generates a test file.
(8013dc3b8db6, et seq; tests/generate.zsh)

Other changes:

	Under zsh≤5.2, widgets whose names start with a _ are no longer excluded
from highlighting.
(ed33d2cb1388; reverts part of 186d80054a40 which was for #65)

	Under zsh≤5.2, widgets implemented by a function named after the widget are
no longer excluded from highlighting.
(487b122c480d; reverts part of 776453cb5b69)

	Under zsh≤5.2, shell-unsafe widget names can now be wrapped.
(#278, 6a634fac9fb9, et seq)

	Correct some test expectations.
(78290e043bc5)

	zsh-syntax-highlighting.plugin.zsh: Convert from symlink to plain file
for msys2 compatibility.
(#292, d4f8edc9f3ad)

	Document installation under some plugin managers.
(e635f766bef9, 9cab566f539b)

	Don’t leak the PATH_DIRS option.
(7b82b88a7166)

	Don’t require the FUNCTION_ARGZERO option to be set.
(#338, 750aebc553f2)

	Under zsh≤5.2, support binding incomplete/nonexistent widgets.
(9e569bb0fe04, part of #288)

	Make the driver reentrant, fixing possibility of infinite recursion
under zsh≤5.2 under interaction with theoretical third-party code.
(#305, d711563fe1bf, 295d62ec888d, f3242cbd6aba)

	Fix warnings when WARN_CREATE_GLOBAL is set prior to sourcing zsh-syntax-highlighting.
(z-sy-h already sets WARN_CREATE_GLOBAL internally.)
(da60234fb236)

	Warn only once, rather than once per keypress, when a highlighter is unavailable.
(0a9b347483ae)

Changes in version 0.4.1

Fixes:

	Arguments to widgets were not properly dash-escaped. Only matters for widgets
that take arguments (i.e., that are invoked as zle ${widget} -- ${args}).
(282c7134e8ac, reverts c808d2187a73)

Changes in version 0.4.0

Added highlighting of:

	incomplete sudo commands
(a3047a912100, 2f05620b19ae)

sudo;
sudo -u;

	command words following reserved words
(#207, #222, b397b12ac139 et seq, 6fbd2aa9579b et seq, 8b4adbd991b0)

if ls; then ls; else ls; fi
repeat 10 do ls; done

(The ls are now highlighted as a command.)

	comments (when INTERACTIVE_COMMENTS is set)
(#163, #167, 693de99a9030)

echo Hello # comment

	closing brackets of arithmetic expansion, subshells, and blocks
(#226, a59f442d2d34, et seq)

((foo))
(foo)
{ foo }

	command names enabled by the PATH_DIRS option
(#228, 96ee5116b182)

When ~/bin/foo/bar exists, is executable, ~/bin is in $PATH,
and 'setopt PATH_DIRS' is in effect
foo/bar

	parameter expansions with braces inside double quotes
(#186, 6e3720f39d84)

echo "${foo}"

	parameter expansions in command word
(#101, 4fcfb15913a2)

x=/bin/ls
$x -l

	the command separators ‘|&’, ‘&!’, ‘&|’

view file.pdf &! ls

Fixed highlighting of:

	precommand modifiers at non-command-word position
(#209, 2c9f8c8c95fa)

ls command foo

	sudo commands with infix redirections
(#221, be006aded590, 86e924970911)

sudo -u >/tmp/foo.out user ls

	subshells; anonymous functions
(#166, #194, 0d1bfbcbfa67, 9e178f9f3948)

(true)
() { true }

	parameter assignment statements with no command
(#205, 01d7eeb3c713)

A=1;

(The semicolon used to be highlighted as a mistake)

	cursor highlighter: Remove the cursor highlighting when accepting a line.
(#109, 4f0c293fdef0)

Removed features:

	Removed highlighting of approximate paths (path_approx).
(#187, 98aee7f8b9a3)

Other changes:

	main highlighter refactored to use states rather than booleans.
(2080a441ac49, et seq)

	Fix initialization when sourcing zsh-syntax-highlighting.zsh via a symlink
(083c47b00707)

	docs: Add screenshot.
(57624bb9f64b)

	widgets wrapping: Don’t add ‘–’ when invoking widgets.
(c808d2187a73) [reverted in 0.4.1]

	Refresh highlighting upon accept-* widgets (accept-line et al).
(59fbdda64c21)

	Stop leaking match/mbegin/mend to global scope (thanks to upstream
WARN_CREATE_GLOBAL improvements).
(d3deffbf46a4)

	‘make install’: Permit setting $(SHARE_DIR) from the environment.
(e1078a8b4cf1)

	driver: Tolerate KSH_ARRAYS being set in the calling context.
(#162, 8f19af6b319d)

	‘make install’: Install documentation fully and properly.
(#219, b1619c001390, et seq)

	docs: Improve ‘main’ highlighter’s documentation.
(00de155063f5, 7d4252f5f596)

	docs: Moved to a new docs/ tree; assorted minor updates
(c575f8f37567, 5b34c23cfad5, et seq)

	docs: Split README.md into INSTALL.md
(0b3183f6cb9a)

	driver: Report $ZSH_HIGHLIGHT_REVISION when running from git
(84734ba95026)

Developer-visible changes:

	Test harness converted to TAP [http://testanything.org/tap-specification.html] format
(d99aa58aaaef, et seq)

	Run each test in a separate subprocess, isolating them from each other
(d99aa58aaaef, et seq)

	Fix test failure with nonexisting $HOME
(#216, b2ac98b98150)

	Test output is now colorized.
(4d3da30f8b72, 6fe07c096109)

	Document make install
(a18a7427fd2c)

	tests: Allow specifying the zsh binary to use.
(557bb7e0c6a0)

	tests: Add ‘make perf’ target
(4513eaea71d7)

	tests: Run each test in a sandbox directory
(c01533920245)

Changes in version 0.3.0

Added highlighting of:

	suffix aliases (requires zsh 5.1.1 or newer):

alias -s png=display
foo.png

	prefix redirections:

<foo.txt cat

	redirection operators:

echo > foo.txt

	arithmetic evaluations:

((42))

	$’’ strings, including \x/\octal/\u/\U escapes

: $'foo\u0040bar'

	multiline strings:

% echo "line 1
line 2"

	string literals that haven’t been finished:

% echo "Hello, world

	command words that involve tilde expansion:

% ~/bin/foo

Fixed highlighting of:

	quoted command words:

% \ls

	backslash escapes in “” strings:

% echo "\x41"

	noglob after command separator:

% :; noglob echo *

	glob after command separator, when the first command starts with ‘noglob’:

% noglob true; echo *

	the region (vi visual mode / set-mark-command) (issue #165)

	redirection and command separators that would be highlighted as path_approx

% echo foo;‸
% echo <‸

(where ‸ represents the cursor location)

	escaped globbing (outside quotes)

% echo *

Other changes:

	implemented compatibility with zsh’s paste highlighting (issue #175)

	$? propagated correctly to wrapped widgets

	don’t leak $REPLY into global scope

Developer-visible changes:

	added makefile with install and test targets

	set warn_create_global internally

	document release process

Version 0.2.1

(Start of changelog.)

Release procedure (for developers):

	Ensure every is-at-least invocation passes a stable zsh release’s version number as the first argument

	For minor (A.B.0) releases:

	Check whether the release uses any not-yet-released zsh features

	Check open issues and outstanding pull requests

	Confirm make test passes

	check with multiple zsh versions
(easiest to check GitHub Actions: https://github.com/zsh-users/zsh-syntax-highlighting/actions)

	Update changelog.md
tig --abbrev=12 --abbrev-commit 0.4.1..upstream/master

	Make sure there are no local commits and that git status is clean;
Remove -dev suffix from ./.version;
Commit that using git commit -m "Tag version $(<.version)." .version;
Tag it using git tag -s -m "Tag version $(<.version)" $(<.version);
Increment ./.version and restore the -dev suffix;
Commit that using git commit -C b5c30ae52638e81a38fe5329081c5613d7bd6ca5 .version.

	Push with git push && git push --tags

	Notify downstreams (OS packages)

	anitya should autodetect the tag

	Update /topic on IRC

zsh-syntax-highlighting / highlighters

Syntax highlighting is done by pluggable highlighters:

	main - the base highlighter, and the only one active by default.

	brackets - matches brackets and parenthesis.

	pattern - matches user-defined patterns.

	regexp - matches user-defined regular expressions.

	cursor - matches the cursor position.

	root - highlights the whole command line if the current user is root.

	line - applied to the whole command line.

Highlighter-independent settings

By default, all command lines are highlighted. However, it is possible to
prevent command lines longer than a fixed number of characters from being
highlighted by setting the variable ${ZSH_HIGHLIGHT_MAXLENGTH} to the maximum
length (in characters) of command lines to be highlighter. This is useful when
editing very long command lines (for example, with the fned [https://zsh.sourceforge.io/Doc/Release/User-Contributions.html#index-zed] utility
function). Example:

ZSH_HIGHLIGHT_MAXLENGTH=512

How to activate highlighters

To activate an highlighter, add it to the ZSH_HIGHLIGHT_HIGHLIGHTERS array in
~/.zshrc, for example:

ZSH_HIGHLIGHT_HIGHLIGHTERS=(main brackets pattern cursor)

By default, $ZSH_HIGHLIGHT_HIGHLIGHTERS is unset and only the main
highlighter is active.

How to tweak highlighters

Highlighters look up styles from the ZSH_HIGHLIGHT_STYLES associative array.
Navigate into the individual highlighters’ documentation to
see what styles (keys) each highlighter defines; the syntax for values is the
same as the syntax of “types of highlighting” of the zsh builtin
$zle_highlight array, which is documented in the zshzle(1) manual
page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

Some highlighters support additional configuration parameters; see each
highlighter’s documentation for details and examples.

How to implement a new highlighter

To create your own acme highlighter:

	Create your script at
highlighters/acme/acme-highlighter.zsh.

	Implement the _zsh_highlight_highlighter_acme_predicate function.
This function must return 0 when the highlighter needs to be called and
non-zero otherwise, for example:

_zsh_highlight_highlighter_acme_predicate() {
 # Call this highlighter in SVN working copies
 [[-d .svn]]
}

	Implement the _zsh_highlight_highlighter_acme_paint function.
This function does the actual syntax highlighting, by calling
_zsh_highlight_add_highlight with the start and end of the region to
be highlighted and the ZSH_HIGHLIGHT_STYLES key to use. Define the default
style for that key in the highlighter script outside of any function with
: ${ZSH_HIGHLIGHT_STYLES[key]:=value}, being sure to prefix
the key with your highlighter name and a colon. For example:

: ${ZSH_HIGHLIGHT_STYLES[acme:aurora]:=fg=green}

_zsh_highlight_highlighter_acme_paint() {
 # Colorize the whole buffer with the 'aurora' style
 _zsh_highlight_add_highlight 0 $#BUFFER acme:aurora
}

If you need to test which options the user has set, test zsyh_user_options
with a sensible default if the option is not present in supported zsh
versions. For example:

[[${zsyh_user_options[ignoreclosebraces]:-off} == on]]

The option name must be all lowercase with no underscores and not an alias.

	Name your own functions and global variables _zsh_highlight_acme_*.

	In zsh-syntax-highlighting 0.4.0 and earlier, the entrypoints
_zsh_highlight_highlighter_acme_predicate and
_zsh_highlight_highlighter_acme_paint
were named
_zsh_highlight_acme_highlighter_predicate and
_zsh_highlight_highlighter_acme_paint respectively.

These names are still supported for backwards compatibility;
however, support for them will be removed in a future major or minor release (v0.x.0 or v1.0.0).

	Activate your highlighter in ~/.zshrc:

ZSH_HIGHLIGHT_HIGHLIGHTERS+=(acme)

	Write tests.

zsh-syntax-highlighting / highlighters / brackets

This is the brackets highlighter, that highlights brackets and parentheses, and
matches them.

How to tweak it

This highlighter defines the following styles:

	bracket-error - unmatched brackets

	bracket-level-N - brackets with nest level N

	cursor-matchingbracket - the matching bracket, if cursor is on a bracket

To override one of those styles, change its entry in ZSH_HIGHLIGHT_STYLES,
for example in ~/.zshrc:

To define styles for nested brackets up to level 4
ZSH_HIGHLIGHT_STYLES[bracket-level-1]='fg=blue,bold'
ZSH_HIGHLIGHT_STYLES[bracket-level-2]='fg=red,bold'
ZSH_HIGHLIGHT_STYLES[bracket-level-3]='fg=yellow,bold'
ZSH_HIGHLIGHT_STYLES[bracket-level-4]='fg=magenta,bold'

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

zsh-syntax-highlighting / highlighters / cursor

This is the cursor highlighter, that highlights the cursor.

How to tweak it

This highlighter defines the following styles:

	cursor - the style for the current cursor position

To override one of those styles, change its entry in ZSH_HIGHLIGHT_STYLES,
for example in ~/.zshrc:

ZSH_HIGHLIGHT_STYLES[cursor]='bg=blue'

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

zsh-syntax-highlighting / highlighters / line

This is the line highlighter, that highlights the whole line.

How to tweak it

This highlighter defines the following styles:

	line - the style for the whole line

To override one of those styles, change its entry in ZSH_HIGHLIGHT_STYLES,
for example in ~/.zshrc:

ZSH_HIGHLIGHT_STYLES[line]='bold'

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

zsh-syntax-highlighting / highlighters / main

This is the main highlighter, that highlights:

	Commands

	Options

	Arguments

	Paths

	Strings

This highlighter is active by default.

How to tweak it

This highlighter defines the following styles:

	unknown-token - unknown tokens / errors

	reserved-word - shell reserved words (if, for)

	alias - aliases

	suffix-alias - suffix aliases (requires zsh 5.1.1 or newer)

	global-alias - global aliases

	builtin - shell builtin commands (shift, pwd, zstyle)

	function - function names

	command - command names

	precommand - precommand modifiers (e.g., noglob, builtin)

	commandseparator - command separation tokens (;, &&)

	hashed-command - hashed commands

	autodirectory - a directory name in command position when the AUTO_CD option is set

	path - existing filenames

	path_pathseparator - path separators in filenames (/); if unset, path is used (default)

	path_prefix - prefixes of existing filenames

	path_prefix_pathseparator - path separators in prefixes of existing filenames (/); if unset, path_prefix is used (default)

	globbing - globbing expressions (*.txt)

	history-expansion - history expansion expressions (!foo and ^foo^bar)

	command-substitution - command substitutions ($(echo foo))

	command-substitution-unquoted - an unquoted command substitution ($(echo foo))

	command-substitution-quoted - a quoted command substitution ("$(echo foo)")

	command-substitution-delimiter - command substitution delimiters ($(and))

	command-substitution-delimiter-unquoted - an unquoted command substitution delimiters ($(and))

	command-substitution-delimiter-quoted - a quoted command substitution delimiters ("$(and)")

	process-substitution - process substitutions (<(echo foo))

	process-substitution-delimiter - process substitution delimiters (<(and))

	arithmetic-expansion - arithmetic expansion $((42)))

	single-hyphen-option - single-hyphen options (-o)

	double-hyphen-option - double-hyphen options (--option)

	back-quoted-argument - backtick command substitution (`foo`)

	back-quoted-argument-unclosed - unclosed backtick command substitution (`foo)

	back-quoted-argument-delimiter - backtick command substitution delimiters (`)

	single-quoted-argument - single-quoted arguments ('foo')

	single-quoted-argument-unclosed - unclosed single-quoted arguments ('foo)

	double-quoted-argument - double-quoted arguments ("foo")

	double-quoted-argument-unclosed - unclosed double-quoted arguments ("foo)

	dollar-quoted-argument - dollar-quoted arguments ($'foo')

	dollar-quoted-argument-unclosed - unclosed dollar-quoted arguments ($'foo)

	rc-quote - two single quotes inside single quotes when the RC_QUOTES option is set ('foo''bar')

	dollar-double-quoted-argument - parameter expansion inside double quotes ($foo inside "")

	back-double-quoted-argument - backslash escape sequences inside double-quoted arguments (\" in "foo\"bar")

	back-dollar-quoted-argument - backslash escape sequences inside dollar-quoted arguments (\x in $'\x48')

	assign - parameter assignments (x=foo and x=())

	redirection - redirection operators (<, >, etc)

	comment - comments, when setopt INTERACTIVE_COMMENTS is in effect (echo # foo)

	comment - elided parameters in command position ($x ls when $x is unset or empty)

	named-fd - named file descriptor (the fd in echo foo {fd}>&2)

	numeric-fd - numeric file descriptor (the 2 in echo foo {fd}>&2)

	arg0 - a command word other than one of those enumerated above (other than a command, precommand, alias, function, or shell builtin command).

	default - everything else

To override one of those styles, change its entry in ZSH_HIGHLIGHT_STYLES,
for example in ~/.zshrc:

Declare the variable
typeset -A ZSH_HIGHLIGHT_STYLES

To differentiate aliases from other command types
ZSH_HIGHLIGHT_STYLES[alias]='fg=magenta,bold'

To have paths colored instead of underlined
ZSH_HIGHLIGHT_STYLES[path]='fg=cyan'

To disable highlighting of globbing expressions
ZSH_HIGHLIGHT_STYLES[globbing]='none'

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

Parameters

To avoid partial path lookups on a path, add the path to the ZSH_HIGHLIGHT_DIRS_BLACKLIST array.

ZSH_HIGHLIGHT_DIRS_BLACKLIST+=(/mnt/slow_share)

Useless trivia

Forward compatibility.

zsh-syntax-highlighting attempts to be forward-compatible with zsh.
Specifically, we attempt to facilitate highlighting command word types that
had not yet been invented when this version of zsh-syntax-highlighting was
released.

A command word is something like a function name, external command name, et
cetera. (See
Simple Commands & Pipelines in zshmisc(1) [https://zsh.sourceforge.io/Doc/Release/Shell-Grammar.html#Simple-Commands-_0026-Pipelines]
for a formal definition.)

If a new kind of command word is ever added to zsh — something conceptually
different than “function” and “alias” and “external command” — then command words
of that (new) kind will be highlighted by the style arg0_$kind,
where $kind is the output of type -w on the new kind of command word. If that
style is not defined, then the style arg0 will be used instead.

zsh-syntax-highlighting / highlighters / pattern

This is the pattern highlighter, that highlights user-defined patterns.

How to tweak it

To use this highlighter, associate patterns with styles in the
ZSH_HIGHLIGHT_PATTERNS associative array, for example in ~/.zshrc:

Declare the variable
typeset -A ZSH_HIGHLIGHT_PATTERNS

To have commands starting with `rm -rf` in red:
ZSH_HIGHLIGHT_PATTERNS+=('rm -rf *' 'fg=white,bold,bg=red')

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

zsh-syntax-highlighting / highlighters / regexp

This is the regexp highlighter, that highlights user-defined regular
expressions. It’s similar to the pattern highlighter, but allows more complex
patterns.

How to tweak it

To use this highlighter, associate regular expressions with styles in the
ZSH_HIGHLIGHT_REGEXP associative array, for example in ~/.zshrc:

typeset -A ZSH_HIGHLIGHT_REGEXP
ZSH_HIGHLIGHT_REGEXP+=('^rm .*' fg=red,bold)

This will highlight lines that start with a call to the rm command.

The regular expressions flavour used is PCRE [https://www.pcre.org/original/doc/html/pcresyntax.html] when the
RE_MATCH_PCRE option is set and POSIX Extended Regular Expressions (ERE),
as implemented by the platform’s C library, otherwise. For details on the
latter, see the zsh/regex module’s documentation [https://zsh.sourceforge.io/Doc/Release/Zsh-Modules.html#The-zsh_002fregex-Module] and the
regcomp(3) and re_format(7) manual pages on your system.

For instance, to highlight sudo only as a complete word, i.e., sudo cmd,
but not sudoedit, one might use:

	When the RE_MATCH_PCRE is set:

typeset -A ZSH_HIGHLIGHT_REGEXP
ZSH_HIGHLIGHT_REGEXP+=('\bsudo\b' fg=123,bold)

	When the RE_MATCH_PCRE is unset, on platforms with GNU libc (e.g., many GNU/Linux distributions):

typeset -A ZSH_HIGHLIGHT_REGEXP
ZSH_HIGHLIGHT_REGEXP+=('\<sudo\>' fg=123,bold)

	When the RE_MATCH_PCRE is unset, on BSD-based platforms (e.g., macOS):

typeset -A ZSH_HIGHLIGHT_REGEXP
ZSH_HIGHLIGHT_REGEXP+=('[[:<:]]sudo[[:>:]]' fg=123,bold)

Note, however, that PCRE and POSIX ERE have a large common subset:
for instance, the regular expressions [abc], a*, and (a|b) have the same
meaning in both flavours.

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

See also: regular expressions tutorial [http://perldoc.perl.org/perlretut.html], zsh regexp operator =~
in the zshmisc(1) manual page [https://zsh.sourceforge.io/Doc/Release/Conditional-Expressions.html#Conditional-Expressions]

zsh-syntax-highlighting / highlighters / root

This is the root highlighter, that highlights the whole line if the current
user is root.

How to tweak it

This highlighter defines the following styles:

	root - the style for the whole line if the current user is root.

To override one of those styles, change its entry in ZSH_HIGHLIGHT_STYLES,
for example in ~/.zshrc:

ZSH_HIGHLIGHT_STYLES[root]='bg=red'

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

zsh-syntax-highlighting / highlighters

Navigate into the individual highlighters’ documentation to see
what styles ($ZSH_HIGHLIGHT_STYLES keys) each highlighter defines.

Refer to the documentation on highlighters for further
information.

zsh-syntax-highlighting / highlighters / brackets

This is the brackets highlighter, that highlights brackets and parentheses, and
matches them.

How to tweak it

This highlighter defines the following styles:

	bracket-error - unmatched brackets

	bracket-level-N - brackets with nest level N

	cursor-matchingbracket - the matching bracket, if cursor is on a bracket

To override one of those styles, change its entry in ZSH_HIGHLIGHT_STYLES,
for example in ~/.zshrc:

To define styles for nested brackets up to level 4
ZSH_HIGHLIGHT_STYLES[bracket-level-1]='fg=blue,bold'
ZSH_HIGHLIGHT_STYLES[bracket-level-2]='fg=red,bold'
ZSH_HIGHLIGHT_STYLES[bracket-level-3]='fg=yellow,bold'
ZSH_HIGHLIGHT_STYLES[bracket-level-4]='fg=magenta,bold'

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

zsh-syntax-highlighting / highlighters / cursor

This is the cursor highlighter, that highlights the cursor.

How to tweak it

This highlighter defines the following styles:

	cursor - the style for the current cursor position

To override one of those styles, change its entry in ZSH_HIGHLIGHT_STYLES,
for example in ~/.zshrc:

ZSH_HIGHLIGHT_STYLES[cursor]='bg=blue'

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

zsh-syntax-highlighting / highlighters / line

This is the line highlighter, that highlights the whole line.

How to tweak it

This highlighter defines the following styles:

	line - the style for the whole line

To override one of those styles, change its entry in ZSH_HIGHLIGHT_STYLES,
for example in ~/.zshrc:

ZSH_HIGHLIGHT_STYLES[line]='bold'

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

zsh-syntax-highlighting / highlighters / main

This is the main highlighter, that highlights:

	Commands

	Options

	Arguments

	Paths

	Strings

This highlighter is active by default.

How to tweak it

This highlighter defines the following styles:

	unknown-token - unknown tokens / errors

	reserved-word - shell reserved words (if, for)

	alias - aliases

	suffix-alias - suffix aliases (requires zsh 5.1.1 or newer)

	global-alias - global aliases

	builtin - shell builtin commands (shift, pwd, zstyle)

	function - function names

	command - command names

	precommand - precommand modifiers (e.g., noglob, builtin)

	commandseparator - command separation tokens (;, &&)

	hashed-command - hashed commands

	autodirectory - a directory name in command position when the AUTO_CD option is set

	path - existing filenames

	path_pathseparator - path separators in filenames (/); if unset, path is used (default)

	path_prefix - prefixes of existing filenames

	path_prefix_pathseparator - path separators in prefixes of existing filenames (/); if unset, path_prefix is used (default)

	globbing - globbing expressions (*.txt)

	history-expansion - history expansion expressions (!foo and ^foo^bar)

	command-substitution - command substitutions ($(echo foo))

	command-substitution-unquoted - an unquoted command substitution ($(echo foo))

	command-substitution-quoted - a quoted command substitution ("$(echo foo)")

	command-substitution-delimiter - command substitution delimiters ($(and))

	command-substitution-delimiter-unquoted - an unquoted command substitution delimiters ($(and))

	command-substitution-delimiter-quoted - a quoted command substitution delimiters ("$(and)")

	process-substitution - process substitutions (<(echo foo))

	process-substitution-delimiter - process substitution delimiters (<(and))

	arithmetic-expansion - arithmetic expansion $((42)))

	single-hyphen-option - single-hyphen options (-o)

	double-hyphen-option - double-hyphen options (--option)

	back-quoted-argument - backtick command substitution (`foo`)

	back-quoted-argument-unclosed - unclosed backtick command substitution (`foo)

	back-quoted-argument-delimiter - backtick command substitution delimiters (`)

	single-quoted-argument - single-quoted arguments ('foo')

	single-quoted-argument-unclosed - unclosed single-quoted arguments ('foo)

	double-quoted-argument - double-quoted arguments ("foo")

	double-quoted-argument-unclosed - unclosed double-quoted arguments ("foo)

	dollar-quoted-argument - dollar-quoted arguments ($'foo')

	dollar-quoted-argument-unclosed - unclosed dollar-quoted arguments ($'foo)

	rc-quote - two single quotes inside single quotes when the RC_QUOTES option is set ('foo''bar')

	dollar-double-quoted-argument - parameter expansion inside double quotes ($foo inside "")

	back-double-quoted-argument - backslash escape sequences inside double-quoted arguments (\" in "foo\"bar")

	back-dollar-quoted-argument - backslash escape sequences inside dollar-quoted arguments (\x in $'\x48')

	assign - parameter assignments (x=foo and x=())

	redirection - redirection operators (<, >, etc)

	comment - comments, when setopt INTERACTIVE_COMMENTS is in effect (echo # foo)

	comment - elided parameters in command position ($x ls when $x is unset or empty)

	named-fd - named file descriptor (the fd in echo foo {fd}>&2)

	numeric-fd - numeric file descriptor (the 2 in echo foo {fd}>&2)

	arg0 - a command word other than one of those enumerated above (other than a command, precommand, alias, function, or shell builtin command).

	default - everything else

To override one of those styles, change its entry in ZSH_HIGHLIGHT_STYLES,
for example in ~/.zshrc:

Declare the variable
typeset -A ZSH_HIGHLIGHT_STYLES

To differentiate aliases from other command types
ZSH_HIGHLIGHT_STYLES[alias]='fg=magenta,bold'

To have paths colored instead of underlined
ZSH_HIGHLIGHT_STYLES[path]='fg=cyan'

To disable highlighting of globbing expressions
ZSH_HIGHLIGHT_STYLES[globbing]='none'

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

Parameters

To avoid partial path lookups on a path, add the path to the ZSH_HIGHLIGHT_DIRS_BLACKLIST array.

ZSH_HIGHLIGHT_DIRS_BLACKLIST+=(/mnt/slow_share)

Useless trivia

Forward compatibility.

zsh-syntax-highlighting attempts to be forward-compatible with zsh.
Specifically, we attempt to facilitate highlighting command word types that
had not yet been invented when this version of zsh-syntax-highlighting was
released.

A command word is something like a function name, external command name, et
cetera. (See
Simple Commands & Pipelines in zshmisc(1) [https://zsh.sourceforge.io/Doc/Release/Shell-Grammar.html#Simple-Commands-_0026-Pipelines]
for a formal definition.)

If a new kind of command word is ever added to zsh — something conceptually
different than “function” and “alias” and “external command” — then command words
of that (new) kind will be highlighted by the style arg0_$kind,
where $kind is the output of type -w on the new kind of command word. If that
style is not defined, then the style arg0 will be used instead.

zsh-syntax-highlighting / highlighters / pattern

This is the pattern highlighter, that highlights user-defined patterns.

How to tweak it

To use this highlighter, associate patterns with styles in the
ZSH_HIGHLIGHT_PATTERNS associative array, for example in ~/.zshrc:

Declare the variable
typeset -A ZSH_HIGHLIGHT_PATTERNS

To have commands starting with `rm -rf` in red:
ZSH_HIGHLIGHT_PATTERNS+=('rm -rf *' 'fg=white,bold,bg=red')

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

zsh-syntax-highlighting / highlighters / regexp

This is the regexp highlighter, that highlights user-defined regular
expressions. It’s similar to the pattern highlighter, but allows more complex
patterns.

How to tweak it

To use this highlighter, associate regular expressions with styles in the
ZSH_HIGHLIGHT_REGEXP associative array, for example in ~/.zshrc:

typeset -A ZSH_HIGHLIGHT_REGEXP
ZSH_HIGHLIGHT_REGEXP+=('^rm .*' fg=red,bold)

This will highlight lines that start with a call to the rm command.

The regular expressions flavour used is PCRE [https://www.pcre.org/original/doc/html/pcresyntax.html] when the
RE_MATCH_PCRE option is set and POSIX Extended Regular Expressions (ERE),
as implemented by the platform’s C library, otherwise. For details on the
latter, see the zsh/regex module’s documentation [https://zsh.sourceforge.io/Doc/Release/Zsh-Modules.html#The-zsh_002fregex-Module] and the
regcomp(3) and re_format(7) manual pages on your system.

For instance, to highlight sudo only as a complete word, i.e., sudo cmd,
but not sudoedit, one might use:

	When the RE_MATCH_PCRE is set:

typeset -A ZSH_HIGHLIGHT_REGEXP
ZSH_HIGHLIGHT_REGEXP+=('\bsudo\b' fg=123,bold)

	When the RE_MATCH_PCRE is unset, on platforms with GNU libc (e.g., many GNU/Linux distributions):

typeset -A ZSH_HIGHLIGHT_REGEXP
ZSH_HIGHLIGHT_REGEXP+=('\<sudo\>' fg=123,bold)

	When the RE_MATCH_PCRE is unset, on BSD-based platforms (e.g., macOS):

typeset -A ZSH_HIGHLIGHT_REGEXP
ZSH_HIGHLIGHT_REGEXP+=('[[:<:]]sudo[[:>:]]' fg=123,bold)

Note, however, that PCRE and POSIX ERE have a large common subset:
for instance, the regular expressions [abc], a*, and (a|b) have the same
meaning in both flavours.

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

See also: regular expressions tutorial [http://perldoc.perl.org/perlretut.html], zsh regexp operator =~
in the zshmisc(1) manual page [https://zsh.sourceforge.io/Doc/Release/Conditional-Expressions.html#Conditional-Expressions]

zsh-syntax-highlighting / highlighters / root

This is the root highlighter, that highlights the whole line if the current
user is root.

How to tweak it

This highlighter defines the following styles:

	root - the style for the whole line if the current user is root.

To override one of those styles, change its entry in ZSH_HIGHLIGHT_STYLES,
for example in ~/.zshrc:

ZSH_HIGHLIGHT_STYLES[root]='bg=red'

The syntax for values is the same as the syntax of “types of highlighting” of
the zsh builtin $zle_highlight array, which is documented in the zshzle(1)
manual page [https://zsh.sourceforge.io/Doc/Release/Zsh-Line-Editor.html#Character-Highlighting].

zsh-syntax-highlighting / tests

Utility scripts for testing zsh-syntax-highlighting highlighters.

The tests harness expects the highlighter directory to contain a test-data
directory with test data files.
See the main highlighter for examples.

Tests should set the following variables:

	

Each test should define the string $BUFFER that is to be highlighted and the
array parameter $expected_region_highlight.
The value of that parameter is a list of strings of the form "$i $j $style".
or "$i $j $style $todo".
Each string specifies the highlighting that $BUFFER[$i,$j] should have;
that is, $i and $j specify a range, 1-indexed, inclusive of both endpoints.
$style is a key of $ZSH_HIGHLIGHT_STYLES.
If $todo exists, the test point is marked as TODO (the failure of that test
point will not fail the test), and $todo is used as the explanation.

	

If a test sets $skip_test to a non-empty string, the test will be skipped
with the provided string as the reason.

	

If a test sets $fail_test to a non-empty string, the test will be skipped
with the provided string as the reason.

	

If a test sets unsorted=1 the order of highlights in $expected_region_highlight
need not match the order in $region_highlight.

	

Normally, tests fail if $expected_region_highlight and $region_highlight
have different numbers of elements. To mark this check as expected to fail,
tests may set $expected_mismatch to an explanation string (like $todo);
this is useful when the only difference between actual and expected is that actual
has some additional, superfluous elements. This check is skipped if the
$todo component is present in any regular test point.

Note: $region_highlight uses the same "$i $j $style" syntax but
interprets the indexes differently.

Note: Tests are run with setopt NOUNSET WARN_CREATE_GLOBAL, so any
variables the test creates must be declared local.

Isolation: Each test is run in a separate subshell, so any variables,
aliases, functions, etc., it defines will be visible to the tested code (that
computes $region_highlight), but will not affect subsequent tests. The
current working directory of tests is set to a newly-created empty directory,
which is automatically cleaned up after the test exits. For example:

setopt PATH_DIRS
mkdir -p foo/bar
touch foo/bar/testing-issue-228
chmod +x foo/bar/testing-issue-228
path+=("$PWD"/foo)

BUFFER='bar/testing-issue-228'

expected_region_highlight=(
 "1 21 command" # bar/testing-issue-228
)

Writing new tests

An experimental tool is available to generate test files:

zsh -f tests/generate.zsh 'ls -x' acme newfile

This generates a highlighters/acme/test-data/newfile.zsh test file based on
the current highlighting of the given $BUFFER (in this case, ls -x).

This tool is experimental. Its interface may change. In particular it may
grow ways to set $PREBUFFER to inject free-form code into the generated file.

Highlighting test

test-highlighting.zsh tests the correctness of
the highlighting. Usage:

zsh test-highlighting.zsh <HIGHLIGHTER NAME>

All tests may be run with

make test

which will run all highlighting tests and report results in TAP format [http://testanything.org/].
By default, the results of all tests will be printed; to show only “interesting”
results (tests that failed but were expected to succeed, or vice-versa), run
make quiet-test (or make test QUIET=y).

Performance test

test-perfs.zsh measures the time spent doing the
highlighting. Usage:

zsh test-perfs.zsh <HIGHLIGHTER NAME>

All tests may be run with

make perf

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/after1-smaller.png
% echo $'Hello, world\x21'

_images/after4-smaller.png
% ccho 3> /proc/../vm/drop_caches

_images/before1-smaller.png
% echo $'Hello, world\x21"

_images/after2-smaller.png
% echo 'Pay $5 to Joe'
% echo "Pay $5 to Joe"

_images/after3-smaller.png

_images/before2-smaller.png
% echo 'Pay $5 to Joe'
% echo "Pay $5 to Joe"

_images/before3-smaller.png

_images/before4-smaller.png
% echo 3> /proc/../vm/drop_caches

_images/gruvbox-dark.png
Prompt: input

Normal row
Normal Alt. row

_images/gruvbox-light-hard.png
Prompt: input

Normal row
Normal Alt. row
Normal Highlight row

Active row

‘i

Active Alt. row

Urgent row

Urgent ALt. row

_images/gruvbox-dark-hard.png
Prompt: input

Normal row
Normal Alt. row
Normal Highlight row

_images/gruvbox-dark-soft.png
Prompt: input

Normal row
Normal Alt. row

_static/ajax-loader.gif

_images/gruvbox-light-soft.png
Prompt: input

Normal row
Normal Alt. row
Normal Highlight row

Active Alt. row

_images/gruvbox-light.png
Prompt: input

Normal row
Normal Alt. row

Normal Highlight row

Urgent Highlight row

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/up.png

